

IBM VisualAge C++ for OS/2

Programming Guide

Version 3.0

S25H-6958-00

ÉÂÔ IBM VisualAge C++ for OS/2

Programming Guide

Version 3.0

S25H-6958-00

 Note!

Before using this information and the product it supports, be sure to read the general information under
“Notices” on page xiii.

Third Edition (May 1995)

This edition applies to Version 3.0 of IBM VisualAge C++ for OS/2 (Programs 30H1664, 30H1665, and 30H1666) and to all
subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for
the level of the product. Consult the latest edition of the applicable IBM system bibliography for current information on this
product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked
at the address given below.

A form for readers’ comments is provided at the back of this publication. If the form has been removed, address your comments
to:

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 Eglinton Avenue East
North York, Ontario, Canada. M3C 1H7

You can also send your comments by facsimile (attention: RCF Coordinator), or you can send your comments electronically to
IBM. Please see “Communicating Your Comments to IBM” for a description of the methods. This page immediately precedes
the Readers' Comment Form at the back of this publication.

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it
believes appropriate without incurring any obligation to you.

 Copyright International Business Machines Corporation 1992, 1995. All rights reserved.

Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Notices . xiii
Programming Interface Information . xiii
Trademarks and Service Marks . xiv

About This Book . xv
Who Should Read This Book . xv
How to Use This Book . xv

How to Read the Syntax Diagrams . xv
Icons Used in This Book . xviii

Changes to this Book . xviii
New Product Features You'll Find in this Book xix
Summary of Changes to this Book . xxi

C and C++ Language Standards and Portability xxii
Getting Help Inside VisualAge C++ . xxiv
Getting Help from the Command Line . xxv
BookManager Books . xxv

Part 1. Running Your Program . 1

Chapter 1. Setting Runtime Environment Variables 3
How to Set Environment Variables . 3
Application Environment Variables . 3

Chapter 2. Running Your Program . 11
Choice of User Interfaces for Running an Application 11
Declaring Arguments to main. 12
Passing Data to a Program . 13
Returning Values from main . 13
Expanding Global File-Name Arguments . 14
Redirecting Standard Streams . 15

Part 2. Coding Your Program . 19

Chapter 3. Performing Input/Output Operations 21
Using Standard Streams . 21
Stream Processing . 22

Text Streams . 22
Binary Streams . 23
Differences between Storing Data as a Text or Binary Stream 23

 Copyright IBM Corp. 1992, 1995 iii

Memory File Input/Output . 25
Memory File Restrictions and Considerations 26

Buffering . 27
Opening Streams Using Data Definition Names 28

Specifying a ddname with the SET Command 28
Describing File Characteristics Using Data Definition Names 29
fopen Defaults . 31

Precedence of File Characteristics . 32
Closing Files . 32
Input/Output Restrictions . 32
I/O Considerations When You Use Presentation Manager 33

Chapter 4. Optimizing Your Program . 35
Standard Optimization Considerations . 35
Fine-tuning Techniques for Optimizing Code . 35

Reducing Program Size . 35
Improving Program Performance . 38

Chapter 5. Creating Multithread Programs 47
What Is a Multithread Program? . 47
Using the Multithread Libraries . 49

Reentrant Functions . 50
Nonreentrant Functions . 51
Process Control Functions . 54
Signal Handling in Multithread Programs . 54
Global Data and Variables . 54

Compiling and Linking Multithread Programs 59
Sample Multithread Program . 59

Chapter 6. Building Dynamic Link Libraries 61
Creating DLL Source Files . 62

Example of a DLL Source File . 62
Creating a Module Definition File . 63

Example of a Module Definition File . 63
Defining Code and Data Segments . 66
Defining Functions to be Exported . 66

Compiling and Linking Your DLL . 67
Creating C++ DLLs . 69

Using _Export and #pragma export . 69
Using CPPFILT . 70
Exporting Virtual Function Tables from a DLL 71

Using Your DLL . 72
Deciding the Best Way to Export Functions from Your DLL 73

iv VisualAge C++ Programming Guide

Sample Definition File for an Executable Module 74
Initializing and Terminating the DLL Environment 75
Sample Program to Build a DLL . 76
Writing Your Own _DLL_InitTerm Function . 77

Initializing the Environment . 78
Terminating the Environment . 78
Example of a User-Created _DLL_InitTerm Function 79

Creating Resource DLLs . 82
Creating Your Own Runtime Library DLLs . 83

Example of Creating a Runtime Library . 86

Part 3. Making Your Program International 89

Chapter 7. Introduction to Locale . 91
Internationalization in Programming Languages 91

Elements of Internationalization . 91
Locales and Localization . 92

Locale-Sensitive Interfaces . 92
Definition of the Default POSIX C Locales . 94
Differences Between SAA C and POSIX C Locales 103
Customizing a Locale . 103

Using the Customized Locale . 104
Referring Explicitly to a Customized Locale 104

Using Environment Variables to Select a Locale 105
Code Set Conversion Utilities . 107

The GENXLT Utility . 107
The ICONV Utility . 107
Code Conversion Functions . 107

Code Set Converters Supplied . 108

Chapter 8. Building a Locale . 113
Using the charmap File . 113

The CHARMAP Section . 118
The CHARSETID Section . 120

Locale Source Files . 120
Using the LOCALDEF Utility . 124

Locale Naming Conventions . 124

Part 4. Advanced Topics . 131

Chapter 9. Using Templates in C++ Programs 133
Template Terms . 133

 Contents v

How the Compiler Expands Templates . 134
Example of Generating Template Function Definitions 135
Including Defining Templates . 137

Including Defining Templates Everywhere 137
Structuring for Automatic Instantiation . 137
Manually Structuring for Single Instantiation 142

Mixing Old and New Templates . 144

Chapter 10. Calling Conventions . 147
Using Linkage Keywords to Specify the Calling Convention 148
_Optlink Calling Convention . 150

Features of _Optlink . 150
Tips for Using _Optlink . 151
General-Purpose Register Implications . 152
Examples of Passing Parameters . 153

_System Calling Convention . 170
Examples Using the _System Convention 171

_Pascal and _Far32_Pascal Calling Conventions 178
Examples Using the _Pascal Convention . 178

__stdcall Calling Convention . 184
__cdecl Calling Convention . 185

Chapter 11. Developing Virtual Device Drivers 187
Creating Code to Run at Ring Zero . 187
Using Virtual Device Driver Calling Conventions 188
Using _Far32 _Pascal Function Pointers . 189
Creating a Module Definition File . 190

Chapter 12. Calling between 32-Bit and 16-Bit Code 191
Linking 32-bit and 16-bit Code . 191
Calling 16-bit Code . 191

Similarities between the 16-Bit Conventions 192
Differences between the 16-Bit Conventions 193
Specifying Stack Size . 193
Compiler Option for 16-Bit Declarations . 194
Restrictions on 16-Bit Calls and Callbacks 194
Example of Calling a 16-Bit Program . 195
Return Values from 16-Bit Calls . 196

Calling Back to 32-bit Code from 16-bit Code 198
Passing Data between 16-bit and 32-bit Code 199
Sharing Data between 32-bit and 16-bit Code 201

Declaring Segmented Pointers . 201
Declaring Shared Objects . 202

vi VisualAge C++ Programming Guide

Chapter 13. Developing Subsystems . 205
Creating a Subsystem . 205

Subsystem Library Functions . 206
Calling Conventions for Subsystem Functions 208

Building a Subsystem DLL . 208
Writing Your Own Subsystem _DLL_InitTerm Function 208

Compiling Your Subsystem . 211
Restrictions When You Are Using Subsystems 212
Example of a Subsystem DLL . 212
Creating Your Own Subsystem Runtime Library DLLs 213

Chapter 14. Signal and OS/2 Exception Handling 217
Using C++ and OS/2 Exception Handling in the Same Program 218
Handling Signals . 218
Default Handling of Signals . 219
Establishing a Signal Handler . 221
Writing a Signal Handler Function . 221

Signal Handling in Multithread Programs 224
Signal Handling Considerations . 224
Handling OS/2 Exceptions . 227

VisualAge C++ Default OS/2 Exception Handling 227
OS/2 Exception Handling in Library Functions 229

Creating Your Own OS/2 Exception Handler 232
Prototype of an OS/2 Exception Handler . 232
Processing Exception Information . 233
Example of Exception Handling . 237

Registering an OS/2 Exception Handler . 240
Handling Signals and OS/2 Exceptions in DLLs 243

Signal and Exception Handling with Multiple Library Environments 244
Using OS/2 Exception Handlers for Special Situations 245
OS/2 Exception Handling Considerations . 246

Restricted OS/2 APIs . 247
Handling Floating-Point Exceptions . 248

Interpreting Machine-State Dumps . 249
Common Problems that Generate Exceptions 252

Chapter 15. Managing Memory . 253
Differentiating between Memory Management Functions 253

Heap-Specific Functions . 254
Tiled Functions . 254
Debug Functions . 255
Heap-Specific Debug Functions . 256
Tiled Debug Functions . 257

 Contents vii

Managing Memory with Multiple Heaps . 258
Why Use Multiple Heaps? . 258
Creating a Fixed-Size Heap . 260
Creating an Expandable Heap . 262
Types of Memory . 265
Changing the Default Heap . 266
A Simple Example of a User Heap . 267
A More Complex Example Featuring Shared Memory 269

Debugging Your Heaps . 273
Debug Memory Management Functions . 273
Heap-Checking Functions . 275
Which Should I Use? . 275

Chapter 16. The IBM System Object Model 277
What is SOM? . 277

SOM and CORBA . 278
The Cost of Using SOM . 278
SOM and DSOM . 278

What is DTS? . 279
Interface Definition Language . 279
SOM and Upward Binary Compatibility of Libraries 280

Release Order of SOM Objects . 281
Version Control for SOM Libraries and Programs 284
Recompilation Requirements for SOM Programs 285

SOM and Interlanguage Sharing of Objects and Methods 286
SOM Requires a Default Constructor with No Arguments 286
Accessing Special Member Functions from Other Languages 287
Assignment Methods . 288
set and get Methods for Attribute Class Members 290

Interface Definition Language (IDL) Considerations 291
Generating IDL for C++ SOM Classes . 292
IDL Types and C++ Types . 292
IDL Names and C++ SOM Pragmas . 293
IDL and OIDL Callstyles . 293
C++ Limitations to IDL . 294

Differences between SOM and C++ . 294
Initializer Lists and Constructors . 295
Function Overloading . 295
Calling Methods Through a NULL Pointer 296
Data Member Offsets . 296
Casting to Pointer-to-SOM-Object . 297
Dereferencing a Virtual Base Pointer to a Derived Base 297
Multiple Inheritance of a Base Class . 298

viii VisualAge C++ Programming Guide

Local Classes . 298
Abstract Classes . 299
Classes as Objects . 299
Metaclasses . 300
offsetof macro . 300
sizeof operator . 301
Instance Data . 301
Templates . 301
Memory Management . 303
Volatile Objects . 307
Data Members Implemented as Attributes 307

Converting C++ Programs to SOM Using SOMAsDefault 307
Creating SOM-Compliant Programs by Inheriting from SOMObject 308
Creating Shared Class Libraries with SOM . 308
Using SOM Classes in DSOM Applications 309
System Object Model (SOM) Options . 309

/Ga . 310
/Gb . 310
/Gz . 311
/Xs . 311
/Fr . 312
/Fs . 312

Macro Defined for SOM . 313
Pragmas for Using SOM . 313

Conventions Used by the SOM Pragmas . 313
The SOM Pragma . 314
The SOMAsDefault Pragma . 315
The SOMAttribute Pragma . 315
The SOMCallStyle Pragma . 318
The SOMClassInit Pragma . 318
The SOMClassName Pragma . 319
The SOMClassVersion Pragma . 320
The SOMDataName Pragma . 321
The SOMDefine Pragma . 322
The SOMIDLDecl Pragma . 323
The SOMIDLPass Pragma . 323
The SOMIDLTypes Pragma . 325
The SOMMetaClass Pragma . 326
The SOMMethodAppend . 327
The SOMMethodName Pragma . 328
The SOMNoDataDirect Pragma . 331
The SOMNoMangling Pragma . 332
The SOMNonDTS Pragma . 333

 Contents ix

The SOMReleaseOrder Pragma . 333

Part 5. Appendixes . 337

Appendix A. ANSI Notes on Implementation-Defined Behavior 339
Implementation-Defined Behavior Common to Both C and C++ 339

Identifiers . 339
Characters . 339
Strings . 340
Integers . 340
Floating-Point Values . 341
Arrays and Pointers . 341
Registers . 342
Structures, Unions, Enumerations, Bit-Fields 342
Qualifiers . 342
Declarators . 342
Statements . 343
Preprocessor Directives . 343
Library Functions . 343
Error Handling . 346
Signals . 346
Translation Limits . 347
Streams and Files . 348
Memory Management . 349
Environment . 349
Localization . 350
Time . 350

C++-Specific Implementation-Defined Behavior 350
Classes, Structures, Unions, Enumerations, Bit Fields 350
Linkage Specifications . 350
Member Access Control . 350
Special Member Functions . 351

Migrating Headers from 16-bit C to 32-bit C/C++. 351
Keywords . 351
Structures . 351
Function Prototypes . 352
Required Conditional Compilation Directives 352

Migrating Headers from 32-bit C Set/2 V1.0 to 32-bit C++ 353
Creating New Headers to Work with Both C and C++ (32-bit) 353

Appendix B. VisualAge C++ Macros and Functions 355
Predefined Macros . 355
Intrinsic Functions . 357

x VisualAge C++ Programming Guide

Functions that Are Inlined when Optimization Is On 357
Functions that Are Always Inlined . 358

Appendix C. Locale Categories . 359
LC_CTYPE Category . 359
LC_COLLATE Category . 363

Collating Rules . 364
Collating Keywords . 366
Comparison of Strings . 371

LC_MONETARY Category . 372
LC_NUMERIC Category . 376
LC_TIME Category . 377
LC_MESSAGES Category . 379
LC_TOD Category . 380
LC_SYNTAX Category . 383

Appendix D. Regular Expressions . 387
Basic Matching Rules . 387
Additional Syntax Specifiers . 389
Order of precedence . 391

Appendix E. Mapping . 393
Name Mapping . 393
Demangling (Decoding) C++ Function Names 394

Using the Demangling Functions . 394
Using the CPPFILT Utility . 395

Data Mapping . 399

Glossary . 409

Bibliography . 429
The IBM VisualAge C++ Library . 429
The IBM VisualAge C++ BookManager Library 429
C and C++ Related Publications . 429
IBM OS/2 2.1 Publications . 429
IBM OS/2 3.0 Publications . 429
Other Books You Might Need . 430

BookManager READ/2 Publications . 430
Non-IBM Publications . 430

Index . 431

 Contents xi

xii VisualAge C++ Programming Guide

 Notices

Any reference to an IBM licensed program in this publication is not intended to state
or imply that only IBM’s licensed program may be used. Any functionally equivalent
product, program or service that does not infringe any of IBM’s intellectual property
rights may be used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, except those expressly
designated by IBM, is the user's responsibility.

IBM may have patents or pending patent applications covering subject matter in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Licensing,
IBM Corporation, 500 Columbus Avenue, Thornwood, NY, 10594, USA.

Programming Interface Information

This book is intended to help you create programs using VisualAge C++. It primarily
documents the General-Use Programming Interface and Associated Guidance
Information provided by VisualAge C++ product.

General-Use programming interfaces allow the customer to write programs that obtain
the services of the VisualAge C++ compiler, debugger, browser, execution trace
analyzer, visual builder, editor, data access frameworks, and class libraries.

However, this book also documents Diagnosis, Modification, and Tuning Information.
Diagnosis, Modification, and Tuning Information is provided to help you debug your
programs.

Warning: Do not use this Diagnosis, Modification, and Tuning Information as a
programming interface because it is subject to change.

Diagnosis, Modification, and Tuning Information is identified where it occurs by an
introductory statement to a chapter or section.

 Copyright IBM Corp. 1992, 1995 xiii

Trademarks and Service Marks

The following terms are trademarks of the IBM Corporation in the United States or
other countries or both:

Windows is a trademark of Microsoft Corporation.

Other company, product, and service names, which may be denoted by a double
asterisk (**), may be trademarks or service marks of others.

BookManager
C/2
C Set/2
C Set ++
Common User Access
CUA
IBM
LibraryReader
Open Class
Operating System/2
OS/2
OS/2 Warp

Personal System/2
PS/2
Presentation Manager
Systems Application Architecture
SAA
VisualAge
WorkFrame
Workplace Shell
System Object Model
SOM

xiv VisualAge C++ Programming Guide

How to Read Syntax Diagrams

About This Book

This book describes coding techniques such as multithreading, creating DLLs, using
templates, signal and exception handling, managing memory, and creating programs
that use 16-bit and 32-bit code. The book focuses mostly on the C and C++
techniques involved, rather than the lower-level OS/2 techniques that are described in
the Control Program Guide and Reference.

Use this book with the other publications described in the “Bibliography” on
page 429.

Who Should Read This Book

This book is written for application and systems programmers who want to use IBM
VisualAge C++ for OS/2 to develop and run C or C++ applications. You should have
a working knowledge of the C or C++ programming language, the OS/2 operating
system, and other products described in Welcome to VisualAge�C++.

How to Use This Book

For an overview and tour of VisualAge C++, see the Welcome to VisualAge�C++. For
introductory information on how to use the VisualAge C++ compiler and tools to
compile, link, debug, browse, and trace your program, see the User's Guide. For
reference information on the more technical aspects of the compiler and advanced
programming techniques, use this book.

How to Read the Syntax Diagrams

This book uses two methods to show syntax. One is for commands, preprocessor
directives, and statements; the other is for compiler options.

Syntax for Commands, Preprocessor Directives, and Statements

¹ Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ►►─── symbol indicates the beginning of a command, directive, or statement.

The ───► symbol indicates that the command, directive, or statement syntax is
continued on the next line.

The ►─── symbol indicates that a command, directive, or statement is continued
from the previous line.

The ───►◄ symbol indicates the end of a command, directive, or statement.

 Copyright IBM Corp. 1992, 1995 xv

How to Read Syntax Diagrams

Diagrams of syntactical units other than complete commands, directives, or
statements start with the ►─── symbol and end with the ───► symbol.

Note: In the following diagrams, STATEMENT represents a C or C++ command,
directive, or statement.

¹ Required items appear on the horizontal line (the main path).

►►──STATEMENT──required_item─────────────────────────────────────►◄

¹ Optional items appear below the main path.

►►──STATEMENT─ ──┬ ┬─────────────── ────────────────────────────────►◄
 └ ┘─optional_item─

¹ If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main
path.

►►──STATEMENT─ ──┬ ┬─required_choice1─ ─────────────────────────────►◄
 └ ┘─required_choice2─

If the items are optional, the entire stack appears below the main path.

►►──STATEMENT─ ──┬ ┬────────────────── ─────────────────────────────►◄
 ├ ┤─optional_choice1─
 └ ┘─optional_choice2─

The item that is the default appears above the main path.

 ┌ ┐─default_item───
►►──STATEMENT─ ──┴ ┴─alternate_item─ ───────────────────────────────►◄

¹ An arrow returning to the left above the main line indicates an item that can be
repeated.

 ┌ ┐───────────────────
►►──STATEMENT─ ───6 ┴─repeatable_item─ ──────────────────────────────►◄

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

¹ Keywords appear in nonitalic letters and should be entered exactly as shown (for
example, pragma).

Variables appear in italicized lowercase letters (for example, identifier). They
represent user-supplied names or values.

xvi VisualAge C++ Programming Guide

How to Read Syntax Diagrams

¹ If punctuation marks, parentheses, arithmetic operators, or other such symbols are
shown, you must enter them as part of the syntax.

Note: The white space is not always required between tokens, but it is recommended
that you include at least one blank between tokens unless specified otherwise.

The following syntax diagram example shows the syntax for the #pragma comment
directive. (See the Language Reference for information on the #pragma directive.)

▌1▐ ▌2▐ ▌3▐ ▌4▐ ▌5▐ ▌6▐ ▌9▐ ▌10▐
 ►►─#──pragma──comment──(─┬─────compiler────────────────────────┬──)─►◄
 │ │
 ├─────date────────────────────────────┤
 │ │
 ├─────timestamp───────────────────────┤
 │ │
 └──┬──copyright──┬──┬─────────────────┤
 │ │ │ │
 └──user───────┘ └──,─"characters"─┘

 ▌7▐ ▌8▐

The syntax diagram is interpreted in the following manner:

▌1▐ This is the start of the syntax diagram.

▌2▐ The symbol # must appear first.

▌3▐ The keyword pragma must appear following the # symbol.

▌4▐ The keyword comment must appear following the keyword pragma.

▌5▐ An opening parenthesis must be present.

▌6▐ The comment type must be entered only as one of the types indicated:
compiler, date, timestamp, copyright, or user.

▌7▐ If the comment type is copyright or user, and an optional character string
is following, a comma must be present after the comment type.

▌8▐ A character string must follow the comma.

▌9▐ A closing parenthesis is required.

▌10▐ This is the end of the syntax diagram.

 About This Book xvii

Changes

The following examples of the #pragma comment directive are syntactically correct
according to the diagram shown above:

 #pragma comment(date)
 #pragma comment(user)

#pragma comment(copyright,"This text will appear in the module")

Syntax for

Compiler

Options

¹ Optional elements are enclosed in square brackets [].

¹ When you have a list of items from which you can choose one, the logical OR
symbol (|) separates the items.

¹ Variables appear in italicized lowercase letters (for example, num).

Examples Syntax Possible Choices

/L[+|-] /L
/L+
/L-

/Lt"string" /Lt"Listing File for Program Test"

Note that, for options that use a plus (+) or minus (-) sign, if you do not specify a
sign, the plus is assumed. For example, the /L and /L+ options are equivalent.

Icons Used in This Book

The VisualAge C++ library uses icons to let you quickly scan pages for key concepts,
examples, cross-references, and other information.

This icon identifies examples that illustrate how to use a particular language feature
or other concept presented in the book.

This icon identifies cross-references to related information in this or other books. The
icon may appear in the left margin where a number of cross-references are collected,
or in miniature form within the text of a paragraph (like this:) where only one or
two cross-references are shown.

This icon identifies information that applies only to the C++ language.

Changes to this Book

In addition to rewriting and re-organizing some of the existing information in the
book to improve clarity and ease of use, we've added some brand new chapters.
Some describe new components, others describe functional enhancements we've made
to previously existing components.

Important: For details on late changes, features, and restrictions, please ensure you
read the README file.

xviii VisualAge C++ Programming Guide

Changes

New Product Features You'll Find in this Book

New features that involve support from many components include:

¹ Direct-to-SOM (DTS) support

The IBM System Object Model (SOM) provides a common programming
interface for building and using objects. SOM improves your C++ programming
productivity in two ways:

– You can release new versions of a class library without requiring users of the
library to recompile their applications.

– You can make your C++ classes and objects accessible to programs written
in other languages, and write C++ programs that use classes and objects
created using other SOM-supported languages.

You can make classes and methods in existing C++ programs SOM-accessible
without having to rewrite class and method definitions. Although SOM imposes
some restrictions on C++ coding conventions, you should be able to convert most
C++ programs for SOM support with minimal effort. Compiler options, #pragma
directives, and other elements have been added to support DTS compilation.

For more details on DTS support, see Chapter 16, “The IBM System Object
Model” on page 277

¹ Improved memory management, including user heaps

In addition to improving our memory allocation methods to increase speed and
reduce memory waste, we have added functions that you can use to create and
manage your own heaps of memory. You can use these user heaps in addition
to, or in place of, the regular runtime heap.

Debug versions of memory management functions are now available for user
heaps and for tiled memory, as well as for regular memory. There are also new
heap-checking functions, similar to those provided by other C/C++ compilers, that
you can use to debug your memory management problems.

The debugger has also added heap-checking capabilities. When your application
stops, you can check the dynamic variables allocated by memory management
functions on the heap.

Memory management is discussed in Chapter 15, “Managing Memory” on
page 253, and the new functions are described in the C Library Reference. For
more details on the debugger, see the section on debugging in the User's Guide,
or the online help for the debugger.

 About This Book xix

Changes

¹ Support for POSIX locales and functions

A locale is a collection of data that encodes information about the cultural
environment. Locales provide a way to internationalize your applications by
defining the language, character sets, date and time format, and other
culturally-determined elements.

VisualAge C++ has added support for locales based on the IEEE POSIX P1003.2
and X/Open Portability Guide standards for global locales and coded character set
conversion. To support locales, we have added a number of new functions,
header files, environment variables, and utilities. The functions include a number
of multibyte functions proposed for addition to the ANSI/ISO C standard.

For more information about locales and how to use them, see the Chapter 7,
“Introduction to Locale” on page 91. The new functions are described in the C

Library Reference.

¹ Template Resolution Improvements

We've added a new 32-bit linker, VisualAge C++ linker, to complement our
32-bit compiler. VisualAge C++ linker is faster than our previous linker,
LINK386, and provides additional features such as:

– Template resolution independent of the compiler (meaning you no longer
have to invoke the linker through icc when you use templates).

– Linker optimization options for improving resolution of function and member
function calls. These options can significantly reduce the size of your
application files.

– Packing of debug information to reduce the size of your files and potentially
improve debugger performance.

The VisualAge C++ linker syntax is consistent with that of LINK386 to make the
transition easier. It also supports most LINK386 options along with the new
VisualAge C++ linker options.

 For more information about templates, see Chapter 9, “Using Templates in
C++ Programs” on page 133. For more information about VisualAge C++
linker, see the section on Linking in the User's Guide.

 ¹ Optimization Improvements

VisualAge C++ has a reputation for producing very fast executables. We've
increased and enhanced the optimizations in our IBM VisualAge C++ Version
3.0 for OS/2 compiler to further improve your program's performance.

We also realize that in some cases, the size of your executable files may be more
critical than the speed they run at. For this reason, both the compiler and
VisualAge C++ linker linker have implemented options that reduce the size of
your code, while still

xx VisualAge C++ Programming Guide

Changes

providing some measure of performance improvement. For more information
about optimization and the options that control it, see Chapter 4, “Optimizing
Your Program” on page 35 in this book and the sections on compiling and
linking in the User's Guide.

Summary of Changes to this Book

Here is a summary of the changes discussed above which have been made to this
Book:

Added

Several chapters on new topics have been added:

¹ Customizing the language and culture sensitive behavior of applications, in
Chapter 7, “Introduction to Locale” on page 91 and in Chapter 8, “Building a
Locale” on page 113

¹ Managing the memory of your application more efficiently, see Chapter 15,
“Managing Memory” on page 253

¹ Creating and using language-independent objects, see Chapter 16, “The IBM
System Object Model” on page 277

Moved

One chapter and one appendix have been moved to other documents in the IBM
VisualAge C++ for OS/2 library:

¹ The chapter on compiling and linking your program, including using debugging
and diagnostic options, has been moved to the User's Guide.

¹ The appendix that dealt with solving common C problems has been moved to
Frequently-Asked Questions.

Rewritten

Two chapters have been extensively re-written to improve clarity and reading ease.

¹ Using compiler-generated templates in your programs, see Chapter 9, “Using
Templates in C++ Programs” on page 133.

¹ How to use 16-bit code with the 32-bit code generated by VisualAge C++, see
Chapter 12, “Calling between 32-Bit and 16-Bit Code” on page 191.

 About This Book xxi

Standards and Portability

C and C++ Language Standards and Portability

The VisualAge C++ product is designed according to the specifications of the
American National Standard for Information Systems / International Standards

Organization – Programming Language C, ANSI/ISO 9899-1990[1992], as
understood and interpreted by IBM as of October 1993. Behavior that the ANSI C
Standard declares as implementation-defined is described in Appendix A, “ANSI
Notes on Implementation-Defined Behavior” on page 339.
If you will be using VisualAge C++ to develop code according to the American
National Standards Institute (ANSI) standard, you should also refer to the ANSI
guidelines. If you will be developing code according to the International Standards
Organization (ISO) standard, refer to the ISO guidelines. General information about
writing portable C code is included in the Portability Guide for IBM C, SC09-1405.

VisualAge C++ also implements the Systems Application Architecture (SAA) C
Level 2 definition, which is a superset of the ANSI standard. For more
information on the SAA C standard, see the Language Reference. If you will be
using VisualAge C++ to develop C applications to be compiled and run on other
Systems Application Architecture* (SAA*) systems, you should follow the SAA
standards as outlined in the SAA Common Programming Interface C Language

Reference – Level 2, SC09-1308.

When following ANSI, ISO, or SAA standards, do not use the extensions specific to
VisualAge C++ compiler as described in the C Library Reference and the Language

Reference.

At this time, there is no universal standard for the C++ language comparable to C
standards. However, an ANSI committee is developing a C++ language standard. Its
September 17, 1992 working paper, Draft Proposed American National Standard for

Information Systems — Programming Language C++, X3J16/92-0060, was used as a
base document for developing the VisualAge C++ compiler. The
VisualAge C++ compiler will continue to change its design in accordance with
the ANSI standard as it evolves. If portability of your C++ programs is important,
isolate those parts of your code that use the Collection and User Interface class
libraries, which are specific to VisualAge C++ product. Then you can easily remove
or replace them when migrating your programs.

If you will be using IBM VisualAge C++ for OS/2 for the development of
applications that will run only under the OS/2 operating system, you may want to
exploit the OS/2 services and APIs and the VisualAge C++ multithread features. For
details of multithread features available under VisualAge C++, see Chapter 5,
“Creating Multithread Programs” on page 47).

xxii VisualAge C++ Programming Guide

How to Get Help

How to Get Help

There are three kinds of online information available to you while you are using
VisualAge C++:

Online documents

These are complete documents, like the one you are reading now,
presented online. These documents contain detailed information on the
different aspects of VisualAge C++. For your convenience, the online
documents are presented in two formats:

¹ Standard format. See “Getting Help Inside VisualAge C++” on
page xxiv for instructions on opening standard format documents
from inside VisualAge C++. See “Getting Help from the Command
Line” on page xxv for instructions on opening standard format
documents from the command line. The following documents are
available in standard format:
– Read Me First!

– Welcome to VisualAge�C++
 – User's Guide

 – Programming Guide

– Visual Builder User's Guide

– Visual Builder Parts Reference

– Building VisualAge�C++ Parts for Fun and Profit

– Open Class Library User's Guide

– Open Class Library Reference

 – Language Reference

– C Library Reference

– Editor Command Reference

¹ BookManager format. See “BookManager Books” on page xxv for
details on how to access online documents in this format. For a list
of the VisualAge C++ documents that are available in BookManager
format, see “Bibliography” on page 429.

Contextual help

Contextual help is available throughout VisualAge C++. This help tells
you all about the elements that you see in the interface, including menus,
entry fields, and pushbuttons.

 About This Book xxiii

How Do I help

Many of the common tasks that you want to perform with
VisualAge C++ are described in How Do I help. The How Do I help for
a task gives you step-by-step instructions for completing the task. There
is overall How Do I help for VisualAge C++, as well as individual task
lists for each of its components.

Getting Help Inside VisualAge C++

All three kinds of help are available directly within the VisualAge C++ interface:

¹ To get general contextual help for the component of VisualAge C++ that you are
using, press F1 anywhere in the window.

¹ To get contextual help on a particular menu, menu item, or button, highlight the
element and press F1.

¹ To get access to all of the help information that is available to you in a particular
window, click on Help in the menu bar at the top of the window. This menu
includes the following selections:
– Help Index, an alphabetical list of all of the help topics that are available

from this window
– General Help, overall help for the window
– Using Help, general information about the help facility

 – How Do I..., the How Do I help for the component
– Product Information, a dialog that shows the level of VisualAge C++

being used
¹ To get detailed information, open the Information folder in the VisualAge C++

folder. In this folder you will find icons for a variety of online documents that
describe, in detail, the different aspects of VisualAge C++. To open a particular
online document, double click on its icon.

xxiv VisualAge C++ Programming Guide

Getting Help from the Command Line

If you want, you can look at the online documents by issuing the view command.
The installation routine stores the online document files in the \IBMCPP\HELP
directory. To view the Language Reference, for example, make C:\IBMCPP\HELP
your current directory (substituting the drive where you installed VisualAge C++ for
C:) and enter the following command:

 VIEW CPPLNG.INF

If you want to get information on a specific topic, you can specify a word or a series
of words after the file name. If the words appear in an entry in the table of contents
or the index, the online document is opened to the associated section. For example, if
you want to read the section on operator precedence in the Language Reference, you
can enter the following command:

VIEW CPPLNG.INF OPERATOR PRECEDENCE

 BookManager Books

In addition to standard format, the online documents are also available in
BookManager format. In this format they can be read using the BookManager
READ/2 product (program number 73F6023). VisualAge C++ comes complete with
the IBM Library Reader, which allows you to read BookManager books without
having to install the complete BookManager READ/2 product. Like the standard
format, the BookManager format features hypertext links and a search utility.

 About This Book xxv

xxvi VisualAge C++ Programming Guide

Running Your Program

Part 1. Running Your Program

This part describes how to set environment variables for running your program, how
to specify runtime options, and how to redirect standard input/output.

Chapter 1. Setting Runtime Environment Variables 3
How to Set Environment Variables . 3
Application Environment Variables . 3

Chapter 2. Running Your Program . 11
Choice of User Interfaces for Running an Application 11
Declaring Arguments to main. 12
Passing Data to a Program . 13
Returning Values from main . 13
Expanding Global File-Name Arguments . 14
Redirecting Standard Streams . 15

 Copyright IBM Corp. 1992, 1995 1

Running Your Program

2 VisualAge C++ Programming Guide

Application Environment Variables

1 Setting Runtime Environment Variables

This chapter discusses environment variables which compose the runtime of the
applications you build. You need to be aware of them when you build the application
as they can affect the behaviour of your application and can lead to unexpected
results if not taken into account.

How to Set Environment Variables

You can set the runtime environment for your application by using OS/2 environment
variables. You can set most of them from the command line, in your CONFIG.SYS
file, in a command file using the SET command, or from within your program using
the putenv function.

You can put an optional semicolon at the end of the commands that set the
environment variables so that you can later append values to the variables from the
command line.

The functions that access these environment variables are not available when you use
the subsystem libraries. To access the environment variables when you are using the
subsystem libraries, you must use OS/2 APIs. See the online PM Programming

Reference for more information about OS/2 APIs.

Some of the variables discussed in this chapter are also used at compile time. The
compiler environment variables are described in the User's Guide. For more
information on environment variables in general, see the OS/2 Master Help Index or
OS/2 Command Reference.

Application Environment Variables

The following environment variables determine where your application will look to
locate files necessary to the execution of its tasks. Files for such things as command
interpretation, runtime messages, and locale settings will all be needed. If you do not
make sure that the environment variables are correctly set, your application may fail
to find a file, or worse yet, find and use an unintended file.

 Copyright IBM Corp. 1992, 1995 3

Application Environment Variables

The following environment variables are discussed:

 ¹ COMSPEC
 ¹ DPATH
 ¹ LANG
¹ LC Environment Variables

 ¹ LIBPATH
 ¹ LOCPATH
 ¹ PATH
 ¹ TEMPMEM
 ¹ TMP
 ¹ TZ

COMSPEC The system function uses this variable to locate the command interpreter. When the
OS/2 operating system is installed, the installation program sets the COMSPEC
variable in the CONFIG.SYS file to the name and path of the command interpreter.
To change the COMSPEC variable, use the SET command in CONFIG.SYS. For
example:

 SET COMSPEC=c:\mydir\mycmd.exe

sets the command interpreter as mycmd.exe in the c:\mydir directory. For more
information on the system function, refer to the C Library Reference.

DPATH The iconv function uses this environment variable to locate the tables built by the
genxlt utility. Also, when you run an executable program, unless you have bound
the runtime messages files to the executable file using the MSGBIND utility, the
runtime messages files must be either in your current directory or in one of the
directories specified by the DPATH variable.

The DPATH variable can be set by using the SET command.

For example, given the following DPATH value:

 DPATH=c:\kevin;d:\michel

the program would search the current directory, and then the directories c:\kevin
and d:\michel, in that order.

If when you installed VisualAge C++ you chose the option of having your
CONFIG.SYS file modified, the DPATH statement in your CONFIG.SYS file was
changed to:

 SET DPATH=d:\IBMCPP\HELP;d:\IBMCPP;d:\IBMCPP\LOCALE;d:\IBMCPP\MACROS

4 VisualAge C++ Programming Guide

Application Environment Variables

LANG The LANG environment variable specifies the default locale name for the locale
categories, when the LC_ALL environment variable is not defined and the locale
categories environment variable is not defined.

LC

Environment

Variables

The following environment variables are used to specify the names of locale
categories:

 ¹ LC_ALL
 ¹ LC_COLLATE
 ¹ LC_CTYPE
 ¹ LC_MESSAGES
 ¹ LC_MONETARY
 ¹ LC_NUMERIC
 ¹ LC_TIME
 ¹ LC_TOD
 ¹ LC_SYNTAX

“Locale Source Files” on page 120 describes the locale categories that correspond to
these environment variables. “Customizing a Locale” on page 103 tells you how to
use these environment variables to customize a locale.

LIBPATH The operating system searches the directories specified by this directive to find all
.DLL files required by the program. The LIBPATH is set at system startup and
cannot be reset dynamically. The library DLLs and any user DLLs must be in one of
the directories specified by the LIBPATH.

This variable can only be specified in the CONFIG.SYS file. For example:

 LIBPATH=.;c:\cmlib;c:\IBMCPP\DLL;

sets the DLL search path to the current directory, c:\cmlib, and c:\IBMCPP\DLL.
For more information on DLLs, see Chapter 6, “Building Dynamic Link Libraries”
on page 61.

LIBPATH cannot be specified using the SET command. Also, unlike the PATH
environment variable, the operating system does not check the current directory first
by default. If you want the current directory checked first, you must explicitly list it
in the LIBPATH statement.

LIBPATH can be useful in switching between conflicting versions of a tool. Simply
create an empty DLL directory somewhere in the LIBPATH and copy the required
DLLs into this directory to control version execution.

Note: While the LIBPATH variable itself cannot be reset without rebooting the
system, OS/2 Warp Version 3.0 provides a mechanism for you or an application to

 Chapter 1. Setting Runtime Environment Variables 5

Application Environment Variables

extend the path variable. Applications can use DosSetExtLIBPATH to set the path
extension and DosQueryExtLIBPATH to query the current extension. Parameters of
these functions tell the system whether the extension should go before or after the
LIBPATH.

 For more information on DosSetExtLIBPATH and DosQueryExtLIBPATH, see the
OS/2 Warp Version 3.0 Control Program Guide and Reference.

LOCPATH The setlocale function uses this environment variable at run time to search for
locale information not in the current directory.

If you chose to modify your CONFIG.SYS file at install time, your LOCPATH
statement in that file will look like:

 SET LOCPATH=D:\IBMCPP\LOCALE

PATH The system, exec, and _spawn functions use this environment variable to search for
.EXE and .CMD files not in the current directory. You can set it by using the SET
command from an OS/2 window or fullscreen session, or in a command file. For
example,

SET PATH=c:\IBMCPP\BIN;c:\IBMCPP\HELP, e:\ian;d:\steve

You can specify one or more directories with this variable. Given the above
example, the path searched would be the current directory and then the directories
c:\IBMCPP\BIN, c:\IBMCPP\HELP, e:\ian, and d:\steve.

 For further information on the functions that use PATH, refer to the C Library

Reference.

TEMPMEM Use this variable to control whether temporary files are created as memory files or
as disk files. It can be set using the SET command either in the CONFIG.SYS file or
on the command line. For example:

 SET TEMPMEM=on

If the value specified is on (in upper-, lower-, or mixed case), and you compile with
the /Sv+ option, the temporary files will be created as memory files. If TEMPMEM
is set to any other value, the temporary files will be disk files. If you do not compile
with /Sv+, memory file support is not available and your program will end with an
error when it tries to open a memory file.

If TEMPMEM will be used by a program, you must set its value in the environment
before the program starts. You cannot set it from within the program.

6 VisualAge C++ Programming Guide

Application Environment Variables

TMP The directory specified by this variable holds temporary files, such as those created
using the tmpfile If any of these values is not valid, function. (tmpfile is described
in the C Library Reference.) You must set the TMP variable to use the
VisualAge C++ compiler.

Set the TMP variable with the SET command either in the CONFIG.SYS file or on
the command line. For example:

 SET TMP=c:\IBMCPP\TMP

You can specify only one directory using the TMP variable.

Note: The TMP environment variable may be set by applications other than
VisualAge C++. If another application changes TMP to specify a different directory,
this directory will be used by VisualAge C++ to hold temporary files.

TZ This variable is used to describe the timezone information that the locale will use.
To set TZ, use the SET which has the following format:

►►──SET──TZ──=──SSS─ ──┬ ┬────────────────────────────── ──────────────────────────►
 └ ┘ ──┬ ┬─── ─h─ ──┬ ┬────────────────
 ├ ┤─+─ └ ┘ ─:──m─ ──┬ ┬──────
 └ ┘─-─ └ ┘ ─:──s─

►─ ──┬ ┬─── ────────────────────────────────►◄
 └ ┘ ─DDD─ ──┬ ┬────────────────────────────────

└ ┘──,sm,sw,sd,st,em,ew,ed,et,shift

The values for the TZ variable are defined below. The default values given are for
the built-in "C" locale defined by the ANSI C standard.

Figure 1 (Page 1 of 2). TZ Environment Variable Parameters

Variable Description Default Value

SSS Standard-timezone identifier. It must be three
characters, must begin with a letter, and can
contain spaces.

EST

h, m, s The variable h specifies the difference (in hours)
between the standard time zone and coordinated
universal time (CUT), formerly Greenwich mean
time (GMT). You can optionally use m to
specify minutes after the hour, and s to specify
seconds after the minute. A positive number
denotes time zones west of the Greenwich
meridian; a negative number denotes time zones
east of the Greenwich meridian. The number
must be an integer value.

5

 Chapter 1. Setting Runtime Environment Variables 7

Application Environment Variables

For example:

 SET TZ=CST6CDT

sets the standard time zone to CST, the daylight saving time zone to CDT, and sets a
difference of 6 hours between CST and CUT. It does not set any values for the start
and end date of daylight saving time or the time shifted.

When TZ is not present, the default is EST5EDT, the "C" locale value. When only the
standard time zone is specified, the default value of n (difference in hours from
GMT) is 0 instead of 5.

If you give values for any of sm, sw, sd, st, em, ew, ed, et, or shift, you
must give values for all of them. the entire statement is considered not valid, and the
time zone information is not changed.

Figure 1 (Page 2 of 2). TZ Environment Variable Parameters

Variable Description Default Value

DDD Daylight saving time (DST) zone identifier. It
must be three characters, must begin with a
letter, and can contain spaces.

EDT

sm Starting month (1 to 12) of DST. 4

sw Starting week (-4 to 4) of DST. Use negative
numbers to count back from the last week of the
month (-1) and positive numbers to count from
the first week (1).

1

sd Starting day of DST.
0 to 6 if sw != 0
1 to 31 if sw = 0

0

st Starting time (in seconds) of DST. 3600

em Ending month (1 to 12) of DST. 10

ew Ending week (-4 to 4) of DST. Use negative
numbers to count back from the last week of the
month (-1) and positive numbers to count from
the first week (1).

-1

ed Ending day of DST.
0 to 6 if ew != 0
1 to 31 if ew = 0

0

et Ending time of DST (in seconds). 7200

shift Amount of time change (in seconds). 3600

8 VisualAge C++ Programming Guide

Application Environment Variables

The value of TZ can be accessed and changed by the tzset function. For more
information on tzset, see the C Library Reference.

 Chapter 1. Setting Runtime Environment Variables 9

Application Environment Variables

10 VisualAge C++ Programming Guide

Running Your Program

2 Running Your Program

This chapter describes common tasks associated with the running of your application.
These include: declaring arguments to main, passing data to your program, returning
values from main, expanding global filenames, and redirecting standard streams.

Choice of User Interfaces for Running an Application

You can compile and link your files to create an executable unit through any one of
three user interfaces:

¹ using the WorkFrame environment to create a project,
¹ using the WorkPlace Shell interface to create an object, or simply,
¹ using the command line to create an executable file.

Directions on how to create and run these elements through the various interfaces is
discussed in the User's Guide.

Note: The OS/2 operating system uses the PATH environment variable to find
executable files. You can run a program from any directory, as long as the
executable program is either:

¹ In your current working directory
¹ In one of the directories specified by the PATH environment variable
¹ Specified on the command line with a fully qualified path name

If more than one of these directories contains an executable file with the same name,
the first executable file that is found on the path is run.

The run time messages files (CPPO.MSG for the C run time) must also be either in
your current working directory or in one of the directories specified by the DPATH
environment variable, unless you have bound the messages to your executable file
using the MSGBIND utility. The utility is described in the User's Guide.

You can the system function in the VisualAge C++ runtime library to run other
programs and OS/2 commands from within a program. See the C Library

Reference for more information on the system function.

 Copyright IBM Corp. 1992, 1995 11

Declaring Arguments to main

Declaring Arguments to main.

To set up your program to receive data from the command line, the project parameter
page, or through object conversations, declare arguments to main as:

int main(int argc, char **argv, char **envp)

Note: In the ANSI definition of C, there are only two possible ways to define main:

int main(int argc, char **argv) { ... }

and

int main(void) { ... }

VisualAge C++ supports this definition as well as the ANSI-conforming definitions.

By declaring these variables as arguments to main, you make them available as local
variables. You need not declare all three arguments, but if you do, they must be in
the order shown. To use the envp argument, you must declare argc and argv, even
if you do not use them.

Each OS/2 command-line argument, regardless of its data type, is stored as a
null-terminated string in an array of strings. The command is passed to the program
as the argv array of strings. The number of arguments appearing at the command
prompt is passed as the integer variable argc.

The first argument of any command is the name of the program to run. The program
name is the first string stored at argv[0]. Because you must always give a program
name, the value of argc is at least 1.

The runtime initialization code stores the first argument after the program name at
argv[1], the second at argv[2], and so on through the end of the arguments. The
total number of arguments, including the program name, is stored in argc. The
argv[argc] is set to a NULL pointer.

You can also access the values of the individual arguments from within the program
using argv. For example, to access the value of the last argument, use the expression
argv[argc-1].

The third argument passed to main, envp, is a pointer to the environment table. You
can use this pointer to access the value of the environment settings. (Note that the
getenv function accomplishes the same task and is easier to use.) The envp
argument is not available when you use the subsystem libraries.

12 VisualAge C++ Programming Guide

Returning Values from main.

The putenv routine may change the location of the environment table in storage,
depending on storage requirements; because of this, the value given to envp when
you start to run your program might not be correct throughout the running of the
program. The putenv and getenv functions access the environment table correctly,
even when its location changes. For more information about putenv and getenv,
see the C Library Reference.

Passing Data to a Program

To pass data to your program by way of the command line, give one or more
arguments after the program name. Each argument must be separated from other
arguments by one or more spaces or tab characters. You must enclose in double
quotation marks any arguments that include spaces, tab characters, double quotation
marks, or redirection characters. For example:

hello 42 "de f" 16

This command runs the program named hello.exe and passes three arguments: 42,
de f, and 16. The combined length of all arguments in the command (including the
program name) cannot exceed the OS/2 maximum length for a command. For
information on the maximum allowable command length, see the OS/2 Commmand

Reference.

You can also use escape sequences within arguments. For example, to represent
double quotation marks, precede the double quotation character with a backslash. To
represent a backslash, use two backslashes in a row. For example, when you invoke
the hello.exe program from the preceding example with this command:

hello "ABC\"" \"HELLO\\

the arguments passed to the program are ABC" and "HELLO\.

Returning Values from main

The function main, like any other C or C++ function, returns a value. Its return value
is an int value that is passed to the operating system as the return code of the
program that has been run.

You can check this return code with the IF ERRORLEVEL command in OS/2 batch
files. For more information on the IF ERRORLEVEL command, see the OS/2
online Command Reference

To cause main to return a specific value to the operating system, use the return
statement or the exit function to specify the value to be returned. The statement

 return 6;

 Chapter 2. Running Your Program 13

Global File-Name Arguments

returns the value 6. For instance, in a REXX program the return value is returned in
the RC variable.

/* RET6.C */
int main(void) {return 6;}

/* Checkret.CMD */
 'RET6'
 say 'RC='rc

will output RC=6 when run.

If you do not use either method, the return code is undefined.

 For more information about main, see the Language Reference.

Expanding Global File-Name Arguments

You can expand global file-name arguments from the OS/2 command line using the
OS/2 global file-name characters (or wildcard characters), the question mark (?), and
asterisk (*), to specify the file-name and path-name arguments at the command
prompt. To use them, you must link your program with the special routine contained
in SETARGV.OBJ. module This object file is included with the libraries in the LIB
directory under the main VisualAge C++ directory. If you do not link your program
with SETARGV.OBJ, the compiler treats the characters literally.

SETARGV.OBJ expands the global file-name characters in the same manner that the
OS/2 operating system does. (See the OS/2 Master Help Index for more information.)
For example, when you link hello.obj with SETARGV.OBJ:

ILINK /NOE hello SETARGV;

and run the resulting executable module hello.exe with this command:

hello *.INC ABC? "XYZ?"

the SETARGV function expands the global file-name characters and causes all file
names with the extension .INC in the current working directory to be passed as
arguments to the hello program. Similarly, all file names beginning with ABC
followed by any one character are passed as arguments. The file names are sorted in
lexical order.

14 VisualAge C++ Programming Guide

Redirecting Standard Streams

If the SETARGV function finds no matches for the global file-name arguments, for
example, if no files have the extension .INC, the argument is passed literally.

Because the "XYZ?" argument is enclosed in quotation marks, the expansion of the
global file-name character is suppressed, and the argument is passed literally as XYZ?.

Alternatively, if you use access your executables through the project interface and you
frequently use global file-name expansion, you can place the SETARGV.OBJ routine in
the standard libraries you use. Then the routine is automatically linked with your
program.

Use the ILIB utility to delete the module named SETUPARG module from the library
(the module name is the same in all VisualAge C++ libraries), and add the SETARGV
module. When you replace SETUPARG with SETARGV, global file-name expansions are
performed automatically on command-line arguments.

 For more information on the ILIB utility, see the User's Guide.

Redirecting Standard Streams

A C or C++ program has standard streams associated with it. You need not open
them; they are automatically set up by the runtime environment when you include
<stdio.h>. The three standard streams are:

stdin The input device from which your program normally retrieves its data. For
example, the library function getchar uses stdin.

stdout The output device to which your program normally directs its output. For
example, the library function printf uses stdout.

stderr The output device to which your program directs its diagnostic messages.

The streams stdprn and stdaux are reserved for use by the OS/2 operating system
and are not supported by VisualAge C++ compiler.

On input and output operations requiring a file pointer, you can use stdin, stdout, or
stderr in the same manner as you would a regular file pointer.

The Presentation Manager (PM) interface uses the stdout and stderr streams
somewhat differently than non-Presentation Manager programs. Strings written to
stdout or stderr do not show up on the screen unless redirected. For more
information on stream behaviour under Presentation Manager, see “I/O Considerations
When You Use Presentation Manager” on page 33.

 Chapter 2. Running Your Program 15

Redirecting Standard Streams

When a C++ program uses the I/O Stream classes, the following predefined streams
are also provided in addition to the standard streams:

cin The standard input stream.

cout The standard output stream.

cerr The standard error stream. Output to this stream is unit-buffered.
Characters sent to this stream are flushed after each insertion operation.

clog Also the standard error stream. Output to this stream is fully buffered.

The cin stream is an istream_withassign object, and the other three streams are
ostream_withassign objects. These streams and the classes they belong to are
described in detail in the Open Class Library Reference.

There may be times when you want to redirect a standard stream to a file. The
following sections describe methods you can use for C and C++ programs.

Redirection from within a Program

To redirect C standard streams to a file from within your program, use the freopen
library function. For example, to redirect your output to a file called pia.out
instead of stdout, code the following statement in your program:

freopen("pia.out", "w", stdout);

 For more information on freopen, refer to the C Library Reference.

You can reassign a C++ standard stream to another istream (cin only) or ostream
object, or to a streambuf object, using the operator=. For example, to redirect your
output to a file called michael.out, create michael.out as an ostream object, and
assign cout to it:

 #include <fstream.h>

 int main(void)
 {

cout << "This is going to the standard output stream" << endl;

 ofstream outfile("michael.out");
cout = outfile;
cout << "This is going to michael.out file" << endl;

 return 0;
 }

You can also assign cout to outfile.rdbuf() to perform the same redirection.

16 VisualAge C++ Programming Guide

Redirecting Standard Streams

 For more information on using C++ standard streams, see the Open Class Library

Reference.

Redirection from the Command Line

To redirect a C or C++ standard stream to a file from the command line, use the
standard OS/2 redirection symbols.

For example, to run the program bill.exe, which has two required parameters XYZ
and 123, and redirect the output from stdout to a file called bill.out, you would
use the following command:

bill XYZ 123 > bill.out

You can also use the OS/2 file handles to redirect one standard stream to another.
For example, to redirect stderr to stdout, you would use the command:

2 > &1

You cannot use redirection from the command line for memory files.

 Refer to the OS/2 online Master Help Index for more information on redirection
symbols.

 Chapter 2. Running Your Program 17

Redirecting Standard Streams

18 VisualAge C++ Programming Guide

Coding Your Program

Part 2. Coding Your Program

This part describes different features of the VisualAge C++ compiler that you may
want to use when you code your program, including the input and output methods,
the support for multithread programs and dynamic link libraries, and ways to improve
program performance and to reduce program size.

Chapter 3. Performing Input/Output Operations 21
Using Standard Streams . 21
Stream Processing . 22
Memory File Input/Output . 25
Buffering . 27
Opening Streams Using Data Definition Names 28
Precedence of File Characteristics . 32
Closing Files . 32
Input/Output Restrictions . 32
I/O Considerations When You Use Presentation Manager 33

Chapter 4. Optimizing Your Program . 35
Standard Optimization Considerations . 35
Fine-tuning Techniques for Optimizing Code . 35

Chapter 5. Creating Multithread Programs 47
What Is a Multithread Program? . 47
Using the Multithread Libraries . 49
Compiling and Linking Multithread Programs 59
Sample Multithread Program . 59

Chapter 6. Building Dynamic Link Libraries 61
Creating DLL Source Files . 62
Creating a Module Definition File . 63
Compiling and Linking Your DLL . 67
Creating C++ DLLs . 69
Using Your DLL . 72
Initializing and Terminating the DLL Environment 75
Sample Program to Build a DLL . 76
Writing Your Own _DLL_InitTerm Function . 77
Creating Resource DLLs . 82
Creating Your Own Runtime Library DLLs . 83

 Copyright IBM Corp. 1992, 1995 19

Coding Your Program

20 VisualAge C++ Programming Guide

Using Standard Streams

3 Performing Input/Output Operations

This chapter describes input and output methods for the VisualAge C++ compiler.

Note that record level I/O is not supported.

Using Standard Streams

Three standard streams are associated with the C language, stdin, stdout, and stderr.
In C++, when you use the I/O Stream Library, there are four additional C++ standard
streams, cin, cout, cerr, and clog. All of the standard streams are described in
“Redirecting Standard Streams” on page 15.

An OS/2 file handle is associated with each of the streams as follows:

The file handle and stream are not equivalent. There may situations where a file
handle is associated with a different stream, for example, where file handle 2 is
associated with a stream other than stderr, cerr, or clog. Do not code your program
in so that it is dependent on the association between the stream and the file handle.

The standard streams are not available when you are using the subsystem libraries.

For information on I/O streams when using Presentation Manager, see “I/O
Considerations When You Use Presentation Manager” on page 33.

The streams stdprn and stdaux are reserved for use by the OS/2 operating system
and are not supported by VisualAge C++.

Note: The C++ streams do not support the use of data definition names (ddnames).
See the Open Class Library Reference for more information about the C++ streams.

File Handle C Stream C++ Stream

0 stdin cin

1 stdout cout

2 stderr cerr, clog

Note: Both cerr and clog are standard error streams; cerr is
unit buffered and clog is fully buffered.

 Copyright IBM Corp. 1992, 1995 21

Stream Processing

 Stream Processing

Input and output are mapped into logical data streams, either text or binary. Streams
present a consistent view of file contents, independent of the underlying file system.

 Text Streams

Text streams contain printable characters and control characters organized into lines.
Each line consists of zero or more characters and ends with a new-line character (\n).
A new-line character is not automatically appended to the end of the file.

The VisualAge C++ compiler may add, alter, or ignore some new-line characters
during input or output so that they conform to the conventions for representing text in
an OS/2 environment. Thus, there may not be a one-to-one correspondence between
the characters in a stream and those in the external representation. See page 23 for
an example of the difference in representations.

Data read from a text stream is equal to the data that was written if it consists only of
printable characters and the horizontal tab, new-line, vertical tab, and form-feed
control characters.

On output, each new-line character is translated to a carriage-return character,
followed by a line-feed character. On input, a carriage-return character followed by a
line-feed character, or a line-feed character alone is converted to a new-line character.

If the last operation on the stream is a read operation, fflush discards the unread
portion of the buffer. If the last operation on the stream is a write operation, fflush
writes out the contents of the buffer. In either case, fflush clears the buffer.

The ftell, fseek, fgetpos, fsetpos, and rewind functions cannot be used to get or
change the file position within character devices or OS/2 pipes.

The C standard streams are always in text mode at the start of your program. You
can change the mode of a standard stream from text to binary, without redirecting the
stream, by using the freopen function with no file name specified. For example:

fp = freopen("", "rb", stdin);

You can use the same method to change the mode from binary back to text. You
cannot change the mode of a stream to anything other than text or binary, nor can
you change the file type to something other than disk. No other parameters are
allowed. Note that this method is included in the SAA C definition, but not in the
ANSI C standard.

22 VisualAge C++ Programming Guide

Stream Processing

Control-Z

Character in

Text Streams

When a text stream is connected to a character device, such as the keyboard or
an OS/2 pipe, the Ctrl-Z (\x1a) character is treated as an end-of-file indicator,
regardless of where it appears in the stream.

If Ctrl-Z is the last character in a file, it is discarded when read. Similarly, when a
file ending with a Ctrl-Z character is opened in append or update mode, the Ctrl-Z is
discarded. Programs compiled by the VisualAge C++ compiler do not automatically
have a Ctrl-Z character appended to the end of the file when the file is closed. If you
require a Ctrl-Z character at the end of your text files, you must write it out yourself.

This treatment of the Ctrl-Z character applies to text streams only. In binary streams,
it is treated like any other character.

 Binary Streams

A binary stream is a sequence of characters or data. The data is not altered on input
or output, so the data read from a binary stream is equal to the data that was written.

If the last operation on the stream is a read operation, fflush discards the unread
portion of the buffer. If the last operation on the stream is a write operation, fflush
writes out the contents of the buffer. In either case, fflush clears the buffer.

Differences between Storing Data as a Text or Binary Stream

If two streams are opened, one as a binary stream and the other as a text stream, and
the same information is written to both, the contents of the streams may differ. The
following example shows two streams of different types and the hexadecimal values
of the resulting files. The values show that the data is stored differently for each file.

#include <stdio.h>

int main(void)
{

FILE *fp1, *fp2;
char lineBin[15], lineTxt[15];

 int x;

Figure 2 (Part 1 of 2). Differences between Binary and Text Streams

 Chapter 3. Performing Input/Output Operations 23

Stream Processing

fp1 = fopen("script.bin","wb");
 fprintf(fp1,"hello world\n");

fp2 = fopen("script.txt","w");
 fprintf(fp2,"hello world\n");

 fclose(fp1);
 fclose(fp2);

fp1 = fopen("script.bin","rb");

/* opening the text file as binary to suppress
the conversion of internal data */
fp2 = fopen("script.txt","rb");

fgets(lineBin, 15, fp1);
fgets(lineTxt, 15, fp2);

printf("Hex value of binary file = ");
for (x=0; lineBin[x]; x++)

printf("%.2x", (int)(lineBin[x]));

printf("\nHex value of text file = ");
for (x=0; lineTxt[x]; x++)

printf("%.2x", (int)(lineTxt[x]));

 printf("\n");

 fclose(fp1);
 fclose(fp2);

/* The expected output is:

Hex value of binary file = 68656c6c6f20776f726c640a
Hex value of text file = 68656c6c6f20776f726c640d0a */

}

Figure 2 (Part 2 of 2). Differences between Binary and Text Streams

As the hexadecimal values of the file contents show in the binary stream
(script.bin), the new-line character is converted to a line feed (\0a), while in the
text stream (script.txt), the new line is converted to a carriage-return line feed
(\0d0a).

24 VisualAge C++ Programming Guide

Memory File I/O

Memory File Input/Output

When you compile with the /Sv+ option, VisualAge C++ compiler supports files
known as memory files. They differ from the other file types only in that they are
temporary files that reside in memory. You can write to and read from a memory file
just as you do with a disk file.

Using memory files can speed up the execution of your program because, under
normal circumstances, there is no disk I/O when your program accesses these files.
However, if your program is running in an environment where the operating system is
paging, you might not get faster execution when using memory files. This loss of
speed is most likely to be true if your memory files are large.

You can create a memory file in two ways:

¹ By specifying type=memory directly in your source code. For example

stream = fopen("memfile.txt", "w, type=memory");

¹ By using the ddname in the fopen call and the SET command to specify the file
you want your program to open.

 stream=fopen("DD:MEMFILE", "w");

Before you run your program, use the SET command:

SET DD:MEMFILE=memfile.txt, memory(y)

The SET DD: statement specifies MEMFILE as a data definition name (ddname).

Notes:

1. You must specify the /Sh+ compiler option to use ddnames.

2. ddnames are not supported for use with C++ standard streams.

Once a memory file has been created, it can be accessed by the module that created it
as well as by any other function within the same process. The memory file remains
accessible until the file is removed by the remove function or until the program has
terminated.

A call to fopen that tries to open a file with the same name as an existing memory
file accesses the memory file, even if you do not specify type=memory in the fopen
call.

When using fopen to open a memory file in write or append mode, you must ensure
that the file is not already open.

 Chapter 3. Performing Input/Output Operations 25

Memory File I/O

Memory File Restrictions and Considerations

¹ You must specify the /Sv+ option to use memory files.

¹ Memory files are private to the process that created them. Redirection to
memory files from the command line is not supported, and they cannot be shared
with any other process, including child processes. Also, memory files cannot be
shared through the system function.

¹ Memory files do not undergo any conversion of the new-line character. Data is
not altered on input or output.

¹ Memory files are unbuffered, and the blksize attribute is ignored. No
validation is performed for the path or file name used.

¹ Memory file names are case sensitive. For example, the file a.a is not the same
memory file as A.A:

 fopen("A.A","w,type=memory");
 remove("a.a");

The above call to remove will not remove memory file A.A because the file name
is in uppercase. Because memory files are always checked first, the function will
look for memory file a.a, and if that file does not exist, it will remove the disk

file a.a (or A.A, because disk files are not case sensitive).

¹ You can request that the temporary files created by the tmpfile function be
either disk files or memory files. By default, tempfile creates disk files. To
have temporary files created as memory files, set the TEMPMEM environment
variable to ON:

 SET TEMPMEM=on

The word on can be in any case. You must still specify the /Sv+ compiler
option. For more information about TEMPMEM, see Chapter 1, “Setting
Runtime Environment Variables” on page 3.

26 VisualAge C++ Programming Guide

Buffering

 Buffering

VisualAge C++ compiler uses buffers to increase the efficiency of system-level I/O.
The following buffering modes are used:

Unbuffered Characters are transmitted as soon as possible. This mode is also
called unit buffered.

Line buffered Characters are transmitted as a block when a new-line character is
encountered or when the buffer is filled.

Fully buffered Characters are transmitted as a block when the buffer is filled.

The buffering mode specifies the manner in which the buffer is flushed, if a buffer
exists.

You can use the blksize parameter with the fopen function to indicate the initial
size of the buffer you want to allocate for the stream. Note that you must specify the
/Sh+ compiler option to use ddnames.

If you do not specify a buffer size, the default size is 4096. Either the setvbuf or
setbuf function can be used to control buffering. One of these functions may be
specified for a stream. You cannot change the buffering mode after any operation on
the file has occurred.

Fully buffered mode is the default unless the stream is connected to a character
device, in which case it is line buffered.

To ensure data is transmitted to external storage as soon as possible, use the setbuf
or setvbuf function to set the buffering mode to unbuffered.

Note: VisualAge C++ does not support pipes that are created with the
DosCreateNPipe API.

 Chapter 3. Performing Input/Output Operations 27

Opening Streams Using ddnames

Opening Streams Using Data Definition Names

When you specify the /Sh+ compiler option, you can use the OS/2 SET command
with a data definition name (ddname) as a parameter to specify the name of the file
to be opened by your program. You can also use the SET command to specify other
file characteristics.

When you use the SET command with ddnames, you can change the files that are
accessed by each run of your program without having to alter and recompile your
source code.

Notes:

1. You cannot use ddnames with the C++ standard streams.

2. The maximum number of files that can be open at any time changes with the
amount of memory available.

Specifying a ddname with the SET Command

To specify a ddname, the SET command has the following syntax:

SET DD:DDNAME=filename[,option, option...]

where:

DDNAME Is the ddname as specified in the source code. The ddname must be in
uppercase.

filename Is the name of the file that will be opened by fopen.

No white-space characters are allowed between the DD and the equal sign.

For example, you could open the file sample.txt in two ways:

¹ By putting the name of the file directly into your source code:

 FILE *stream;
 stream=fopen("sample.txt", "r");

¹ By using a ddname in the fopen call and the SET command to specify the file
you want your program to open:

 FILE *stream;
 stream=fopen("DD:DATAFILE", "r");

Before you run your program, use the SET command:

 SET DD:DATAFILE=c:\sample.txt

28 VisualAge C++ Programming Guide

Describing File Characteristics with ddnames

When the program runs, it will open the file c:\sample.txt. If you want the
same program to use the file c:\test.txt the next time it runs, use the
following SET command:

 SET DD:DATAFILE=c:\test.txt

The SET command can be issued before your program is executed by entering it on
the command line, including it in a batch file, or putting it into the CONFIG.SYS
file. You can also use the putenv function from within the program to set the
ddname. For example:

 _putenv("DD:DATAFILE=sample.txt, writethru(y)");

 For a description of putenv, see the C Library Reference.

Describing File Characteristics Using Data Definition Names

When you are defining ddnames, use the options to specify the characteristics of the
file your program opens. You can specify the options in any order and in upper- or
lowercase. If you specify an option more than once, only the last one takes effect. If
an option is not valid, fopen fails and errno is set accordingly.

You can use the following options when specifying a ddname.

Note: The options blksize, lrecl, and recfm are meant to be used with record
level I/O. Because record level I/O is not supported, these options are accepted but
ignored.

blksize(n)

The size in bytes of the block of data moved between the disk and the program.
The maximum size is 32760 for fixed block files and 32756 for variable block
files. Larger values can improve the efficiency of disk access by lowering the
number of times the disk must be accessed. Typically, values below 512
increase I/O time, and values above 8KB do not show improvement.

lrecl(n)

The size in bytes of one record (logical record length). If the value specified is
larger than the value of blksize, the lrecl value is ignored.

 Chapter 3. Performing Input/Output Operations 29

Describing File Characteristics with ddnames

recfm(f | v | fb | vb)1

Specifies whether the record length is fixed or variable, and whether the records
are stored in blocks.

f The record size is fixed (i.e. all records are the same length) and the
size of each record is specified by the lrecl option.

v The record size is variable and the maximum record size is specified
by the lrecl option.

fb The record size is fixed and the records are stored in blocks. The
record size is specified by the lrecl option, and the block size is
specified by the blksize option. The block size must be an integral
multiple of lrecl.

vb The record size is variable and the records are stored in blocks. The
maximum record size is specified by the lrecl option, and the block
size is specified by the blksize option.

share (read | none | all)

Specifies the file sharing.

read The file can be shared for read access. Other processes can read from
the file, but not write to it.

none The file cannot be shared. No other process can get access to the file
(exclusive access).

all Allows the file to be shared for both read and write access. Other
processes can both read from and write to the file.

1 The default values for these options are underlined.

30 VisualAge C++ Programming Guide

fopen Defaults

writethru(n | y)

Determines whether to force the writing of OS/2 buffers.

n Turns off forced writes to the file. The system is not forced to
write the internal buffer to permanent storage before control is
returned to the application.

y Forces the system to write to permanent storage before control is
returned to the application. The directory is updated after every
write operation.

Use writethru(y) if data must be written to the disk before your
program continues. This can help make data recovery easier should
a program interruption occur.

Note: When writethru(y) is specified, file output will be noticeably slower.

memory(n | y)

Specifies whether a file will exist in permanent storage or in memory.

n Specifies that the file will exist in permanent storage.

y Specifies that the file will exist only in memory. The system uses only
the OS/2 file name. All other parameters, such as a path, are ignored.
You must specify the /Sv+ option to enable memory files.

 fopen Defaults

A call to fopen has the following defaults:

share(read) The file can be shared for read access. Other processes can read
from the file, but not write to it.

writethru(n) The file is opened with no forced writes to permanent storage.

Full buffering is used unless the stream is connected to a character device, then it it is
line buffered.

 For more information on fopen, refer to the C Library Reference.

 Chapter 3. Performing Input/Output Operations 31

I/O Restrictions

Precedence of File Characteristics

You can describe your data both within the program, by fopen, and outside it, by
ddname, but you do not always need to do so. There are advantages to describing the
characteristics of your data in only one place.

Opening a file by ddname may require the merging of the information internal and
external to the program. In the case of a conflict, the characteristics described by
using fopen override those described using a ddname. For example, given the
following ddname statement and fopen command:

SET DD:ROGER=danny.c, memory(n)
stream = fopen("DD:ROGER", "w, type=memory")

the file danny.c will be opened as a memory file.

 Closing Files

The fclose function is used to close a file. On normal program termination, the
compiler library routines automatically close all files and flush all buffers. When a
program ends abnormally, all files are closed but the buffers are not flushed.

 Input/Output Restrictions

The following restrictions apply to input/output operations:

¹ Seeking within character devices and OS/2 piped files is not allowed.

¹ Seeking past the end of the file is not allowed for text files. For binary files that
are opened using any of w, w+, wb+, w+b, or wb, a seek past the end of the file
will result in a new end-of-file position and nulls will be written between the old
end-of-file position and the new one.

Note: When you open a file in append mode, the file pointer is positioned at the end
of the file.

32 VisualAge C++ Programming Guide

I/O Considerations When You Use Presentation Manager

Standard I/O functions such as printf write to OS/2 file handle 1, which is the
default destination of stdout and cout. Unless you redirect the output and messages,
you cannot see them through the Presentation Manager (PM) interface.

There are two ways to display the output sent to stdout or cout depending on
whether you want to see the output while the program is running or after it has
finished:

1. To see the output while the program is running, you must pipe the output stream
to some other program that reads input and displays it using PM calls. For
example, suppose you had a program called "display" which used PM calls to
write to the screen. You could pipe the output from junko.exe to the program
display using the following command:

junko | display

2. To view the output after the program has finished, redirect the output stream to a
file. You can do this from a command line, for example:

junko > file.out

or from within the file using the freopen function:

freopen("file.out", "w", stdout);

To send output from a VisualAge C++ application directly to a PM window, you
must use PM calls.

All error messages during run time go to OS/2 file handle 2, which is the default
destination of stderr, cerr, and clog. Like output to file handle 1, these messages are
not visible through the PM interface. To see the error messages, you must redirect
the error stream to a file.

C++ programs using User Interface classes can force the output messages of C++
exceptions in the library to either stderr, stdout, or to a queue. To do this, prior to
running a Presentation Manager application, two environment variables, ICLUI TRACE
and ICLUI TRACETO must be set.

ICLUI TRACE can be set to off (the default), on, or noprefix. This last value means
the trace is set on but no prefix information is written to trace.

ICLUI TRACETO can then be set to stdout, stderr, or queue (the default). The queue
value causes the trace to be written to a 32-bit OS/2 queue named
\\QUEUES\PRINTF32.

 Chapter 3. Performing Input/Output Operations 33

For more details on redirecting output, see “Redirecting Standard Streams” on
page 15.

34 VisualAge C++ Programming Guide

Reducing Program Size

 4 Optimizing Your Program

Two aspects of your program can be optimized. You can decrease the size of your
program or you can improve your program's execution performance. Note that in
some cases, optimizing for size may result in slower programs, and optimizing for
speed may result in larger programs. In addition, when you optimize your code you
may uncover bugs that had not been evident before.

This chapter provides guidelines only. To obtain the best results for either
performance or module size, experiment with the techniques suggested.

Standard Optimization Considerations

It is assumed you have already implemented the obvious program changes which
typically yield the initial, dramatic, performance improvements. Program changes
you should already have considered include: choosing efficient algorithms with small
memory footprints; avoiding duplicate copies of data; and passing by value versus
passing by reference wherever possible. While not a technical pre-requisite to the
fine-tuning methods discussed here, if you have not already examined your program
for these types of improvements, we recommend you do so before continuing with
this chapter.

 For help on determining the execution profile of your program, see the discussion
of the Performance Analyzer in the User's Guide. The benefits to your program will
vary depending on your code and on the opportunities for optimization available to
the compiler.

Fine-tuning Techniques for Optimizing Code

This chapter describes fine-tuning techniques which have the potential to squeeze that
final percentage point or two of performance improvement out of your program, for
those situations and applications where peak efficiency is required. Because the size
of your program affects both the load time and the runtime characteristics of your
application, it is best to do size tuning before performance tuning. We have
presented the topics in that order.

Reducing Program Size

This section lists the methods you can use to decrease the size of your executable
module.

 Copyright IBM Corp. 1992, 1995 35

Reducing Program Size

Coding

Techniques

The following list describes relatively quick and simple ways you can make your
modules smaller:

¹ Use #pragma strings(readonly) to make your strings read-only. In C++
programs, strings are read-only by default.

¹ Use the \exepack:1 option when linking. This option allows you to build
smaller, compressed executables. The time taken to expand the executable,
which is done automatically by the OS/2 Application Loader when the program is
run, is less than the I/O time of bringing in the larger uncompressed file.

Note: OS/2 Version 3.0 allows you to specify either \exepack:1 or
\exepack:2 for this linker option. The \exepack:2 version uses an improved
compression algorithm but is not compatible with OS/2 Versions 2.0, 2.1 or 2.11.
In those cases, use \exepack:1.

Note: Neither exepack option would be used with the align directive is also
used with a parameter less than 512.

¹ When you declare or define structures or C++ classes, take into account the
alignment of data types. Declare the largest members first to reduce wasted
space between members.

¹ If you do not use the intermediate code linker, arrange your own external data to
minimize gaps in alignment.

¹ Avoid assigning structures.

¹ Avoid assigning structures if your structures are large or if you use #include
<string.h>. Instead, use memcpy to copy the structure.

¹ If you do not use the argc and argv arguments to main, create a dummy
_setuparg function that contains no code.

Using

Libraries and

Library

Functions

Your choice of libraries and of library functions affects the size of your code.
The guidelines below can add up to a greater reduction in size than those listed
above, but they can also require more effort on your part. In some cases, they require
you to write your own code for such things as buffering or exception handling.

¹ Use the subsystem library whenever possible. This library has no runtime
environment, so the initialization, termination, and exception handling code is not
included. It also includes fewer library functions than the standard library.

¹ Use the low-level I/O functions. Note that you must provide your own buffering
for these functions.

36 VisualAge C++ Programming Guide

Reducing Program Size

¹ Disable the inlining of intrinsic C functions.

The /Oc switch disables expansion of intrinsic fuctions whenever the function call
is smaller than the inlined function. You must specify /O whenever you wish to
use the /Oc switch.

Certain string manipulation, floating-point, and trigonometric functions are inlined
by default. (See “Intrinsic Functions” on page 357 for a list of these functions.)
To selectively disable the inlining, parenthesize the function call, for example:

 (strlen)(x);

For most of the floating-point built-in functions, this recommendation does not
apply because the inlined code is probably smaller than a generated call
instruction.

Choosing

Compiler

Options

The following list names the compiler options to use to make your executable
module smaller. Unless noted, these options are not set by default.

/Gd+ Links dynamically to the runtime library. If you link statically, code for all
the runtime functions you call is included in your executable module.

/Gf+ Generates code for fast floating-point execution and eliminates certain
conversions.

/Gh- Does not generate execution trace and analyzer hooks which would increase
module size. This is the default.

/Gi+ Generates code for fast integer execution and eliminates certain conversions.

/Gv- Does not save and restore the DS and ES registers for external function
calls. This is the default.

/Gw- Does not generate an FWAIT instruction after each floating-point load
instruction. This is the default.

/Gx+ For C++ programs only, suppresses generation of exception handling code.

/G3 Optimizes for the 386 processor. This is the default. Optimizing for the
486 or Pentium microprocessor generates extra code. Code compiled with
/G3 runs on a 486 or Pentium microprocessor.

/O+ Turns on optimization.

/Oc+ Turns on optimization for size. You must also specify /O.

/Oi- Does not inline user functions. Inlining reduces overhead but increases
module size. When /O- is specified, this is the default. When /O+ is
specified, /Oi+ becomes the default.

 Chapter 4. Optimizing Your Program 37

Improving Program Performance

/Ol+ Passes code through the intermediate code linker. The intermediate linker
removes unused variables and sorts external data to provide maximal
packing. For best results, use the /Gu+ option to specify that defined data is
not used by external functions. See the User's Guide for more
information about the intermediate linker.

/Sh- Does not include ddname support. This is the default.

/Sv- Does not include memory file support in the library. This is the default.

/Ti- Does not generate debug or Performance Analyzer information, which
would increase module size. This is the default.

/Tx- Provides only the exception message and address when an exception occurs
instead of a complete machine-state dump. This is the default.

If you link your program in a separate link step, specify the /ALIGN:1 linker option
to align segments on 1-byte boundaries. The default alignment is 512 byte
boundaries. Alternatively, you could specify the /EXEPACK linker option, which
compresses repeated byte patterns within pages of data. Neither of these linker
options reduces the memory image size, only the disk size.

Note: Do not use /ALIGN:1 and /EXEPACK together as doing so can significantly
lower performance.

Improving Program Performance

This section lists the methods you can use to improve the speed of your program.

Choosing

Libraries

Your choice of runtime libraries can affect the performance of your code:

¹ Use the subsystem library whenever possible. Because there is no runtime
environment for this library, its load and initialization times are faster than for
the other libraries.

¹ Use the single-thread library for single-thread programs. The multithread library
involves extra overhead.

¹ If your application has multiple executable modules and DLLs, create and use a
common version of a runtime library DLL. See “Creating Your Own Runtime
Library DLLs” on page 83 for more information.

Allocating

and

Managing

Memory

The following list describes ways to improve performance through better memory
allocation and management:

¹ If you allocate a lot of dynamic storage for a specific function, use the _alloca
function. Because _alloca allocates from the stack instead of the heap, the
storage is automatically freed when the function ends. In some cases however,
using _alloca can detract from performance. It causes the function that calls it

38 VisualAge C++ Programming Guide

Improving Program Performance

to chain the EBP register, which creates more code in the function prolog and
also eliminates EBP from use as a general-purpose register. If you are not
allocating much dynamic storage, this overhead can outweigh the benefits of
using _alloca. For this reason, if your function does not allocate a lot of
dynamic storage, use other memory allocation functions.

¹ You can use malloc, DosAllocMem, or if programming in C++, new to allocate
storage. In general, DosAllocMem is faster, but you must do your own heap
management and you cannot use realloc to reallocate the memory. However,
malloc manages the heap for you and the storage it returns can be reallocated
with realloc. In addition, malloc is portable, while DosAllocMem is not.
When programming in C++, use new. new sets up virtual function tables (VFTs)
which malloc and DosAllocMem do not. It also provides additional type
checking not available when using malloc or DosAllocMem.

¹ When you use malloc, the amount of storage allocated is actually the amount
you specify plus a minimal overhead that is used internally by the memory
allocation functions.

¹ When you copy data into storage allocated by calloc, malloc, or realloc, copy
it to the same boundaries on which the compiler would align them. In particular,
aligning double precision floating-point variables and arrays on 8-byte boundaries
can greatly improve performance on the 486 and Pentium microprocessors. For
more information about the mapping of data, see “Data Mapping” on page 399.

¹ When you declare or define structures or C++ classes, take into account the
alignment of data types. Declare the largest members first to reduce wasted
space between members and to reduce the number of boundaries the compiler
must cross. The alignment is especially important if you pack your structure or
class.

¹ After freeing or reallocating storage, periodically call _heapmin to release the
unused storage to the operating system and reduce the working set of your
program. A reduced working set causes less swapping of memory to disk,
resulting in better performance. Experiment to determine how often you should
call _heapmin.

Using Strings

and String

Manipulation

Functions

The handling of string operations can affect the performance of your program:

¹ In C, use #pragma strings (readonly) to make your strings read-only. In
C++, strings are read-only by default. Using the pragma also causes the compiler
to put out only copy of strings that are used in more than one place.

If you use the intrinsic string functions, the compiler can better optimize them if
it knows that any string literals they are operating on will not be changed.

¹ When you store strings into storage allocated by malloc, align the start of the
string on a doubleword boundary. This alignment allows the best performance of

 Chapter 4. Optimizing Your Program 39

Improving Program Performance

the string functions. The compiler performs this alignment for all strings it
allocates.

¹ Keep track of the length of your strings. If you know the length of your string,
you can use memcpy instead of strcpy. The memcpy function is faster because it
does not have to search for the end of the string.

¹ Avoid using strtok. Because this function is very general, you can probably
write a function more specific to your application and get better performance.

Performing

Input and

Output

There are a number of ways to improve your program's performance of input and
output:

¹ Use binary streams instead of text streams. In binary streams, data is not
changed on input or output.

¹ Use the low-level I/O functions, such as open and close. These functions are
faster and more specific to the application than the stream I/O functions like
fopen and fclose. You must provide your own buffering for the low-level
functions.

¹ If you do your own I/O buffering, make the buffer a multiple of 4K, which is the
size of a page. Because malloc uses extra storage as overhead, allocating
storage in a multiple of the page size actually results in more pages being
allocated than required. Instead, use DosAllocMem to allocate this storage for the
buffer.

¹ If you know you have to process an entire file, the following technique has the
advantage of reducing disk I/O, provided the file is not so big that excessive
swapping will occur. Determine the size of the data to be read in, allocate a
single buffer to read it to, read the whole file into that buffer at once using
DosRead, and then process the data in the buffer.

¹ If you perform frequent read or write operations on your temporary files, create
them as memory files. I/O operations can be performed more quickly on
memory files than on disk files. To use memory files, you must specify the /Sv+
option.

¹ Instead of scanf and fscanf, use fgets to read in a string, and then use one of
atoi, atol, atof, or _atold to convert it to the appropriate format.

¹ Use sprintf only for complex formatting. For simpler formatting, such as string
concatenation, use a more specific string function.

¹ When reading input, read in a whole line at once rather than one character at a
time.

40 VisualAge C++ Programming Guide

Improving Program Performance

Designing

and Calling

Functions

Whether you are writing a function or calling a library function, there are a few
things you should keep in mind:

¹ Fully prototype all functions. A full prototype gives the compiler and optimizer
complete information about the types of the parameters. As a result, promotions
from unwidened types to widened types are not required and the compiler never
needs to emit eyecatcher instructions for the function (see “Eyecatchers” on
page 152).

¹ When designing a function, place the most used parameters in the left most
position in the function prototype. The left most parameters have a better chance
of being stored in a register.

¹ Avoid passing structures or unions as function parameters or returning a structure
or a union. Passing such aggregates requires the compiler to copy and store
many values. This is worse in C++ programs in which class objects are passed
by value, a constructor and destructor are called when the function is called.
Instead, pass or return a pointer to the structure or union.

¹ If you call another function near the end of your function and pass it the same
parameters that were passed to your function, put the parameters in the same
order in the function prototypes. The compiler can then reuse the storage that the
parameters are in and does not have to generate code to reorder them.

¹ Use the intrinsic and built-in functions, which include string manipulation,
floating-point, and trigonometric functions. Intrinsic functions require less
overhead and are faster than a function call, and often allow the compiler to
perform better optimization. Your functions are automatically mapped to
intrinsic functions if you include the VisualAge C++ header file, however, in C
only, this mapping is overridden if you #undef the macro name.

¹ Be careful when using intrinsic functions in loops. Many intrinsic functions use
multiple registers. Some of the registers are specific and cannot be changed. In
the loop, the number of values to be placed in registers increases while the
number of registers is limited. As a result, temporary values such as loop
induction variables and results of intermediate calculations often cannot be stored
in registers, thus slowing your program performance.

In general, you will encounter this problem with the intrinsic string functions
rather than the floating-point functions.

¹ Use recursion only where necessary. Because recursion involves building a stack
frame, an iterative solution is always faster than a recursive one.

Other Coding

Techniques

The following list describes other techniques you can use to improve performance:

¹ Minimize the use of external (extern) variables to reduce aliasing and so
improve optimization.

 Chapter 4. Optimizing Your Program 41

Improving Program Performance

¹ Avoid taking the address of local variables. If you use a local variable as a
temporary variable and must take its address, avoid reusing the temporary
variable. Taking the address of a local variable inhibits optimizations that would
otherwise be done on calculations involving that variable.

¹ Avoid using short int values, except in aggregates. Because all integer
arithmetic is done on long values, using short values causes extra conversions
to be performed.

¹ If you do division or modulo arithmetic by a divisor that is a power of 2, if
possible, make the dividend unsigned to produce better code.

 ¹ Use #pragma alloc_txt and #pragma data_seg to group code and data
respectively, to improve the locality of reference. Using #pragma alloc_txt
causes functions that are used at the same time to be stored together. They might
then fit on a single page that can be used and then discarded. You can use
Performance Analyzer to determine which functions to group together. #pragma
data_seg works in a similar manner for grouping data.

¹ Use _Optlink linkage wherever possible. Keep _Optlink as your default linkage
and use linkage keywords to change the linkage for specific functions.

¹ If a loop body has a constant number of iterations, use constants in the loop
condition to improve optimization. For example, the statement for (i=0; i<4;
i++) can be better optimized than for (i=0; i<x; i++).

¹ Avoid goto statements that jump into the middle of loops. Such statements
inhibit certain optimizations.

¹ Use the intermediate code linker to improve optimization. See the User's

Guide for information about the intermediate linker.

¹ Inline your functions selectively. Inlined functions require less overhead and are
generally faster than a function call. The best candidates for inlining are small
functions that are called frequently. Large functions and functions that are called
rarely may not be good candidates for inlining.

For best results, use the Performance Analyzer to decide which functions you
should inline and qualify the _Inline keyword (or inline for C++ files). For
a discussion of using Performance Analyzer in this manner, see the User's Guide.
(Using automatic inlining, specifying /Oi with a value, is not as effective.)
Using the intermediate code linker with user inlining can improve your program
performance even more.

42 VisualAge C++ Programming Guide

Improving Program Performance

Some coding practices, although often necessary, will slow down program
performance:

¹ Calling 16-bit code. The compiler performs a number of conversions to allow
interaction between 32-bit and 16-bit code.

¹ Using the setjmp and longjmp functions. These functions involve storing and
restoring the state of the thread.

¹ Using #pragma handler. This #pragma causes code to be generated to register
and deregister an exception handler for a function.

¹ Using unprototyped variable argument functions. Because of the nature of the
_Optlink calling convention, unprototyped variable-length argument lists make
performance slower. Prototype all of your functions. Also, use the _System

calling convention for any variable argument functions.

 C++-Specific Considerations
The following performance hints apply only to C++ programs:

¹ Because C++ objects are often allocated from the heap and have a limited scope,
memory usage in C++ programs affects performance more than in C programs.
To improve memory usage and performance:

– Tailor your own new and delete operators.
– Allocate memory for a class before it is required.
– Ensure that objects that are no longer needed are freed or otherwise made

available for reuse. One way to do this is to use an object manager. Each
time you create an instance of an object, you pass the pointer to that object
to the object manager. The object manager maintains a list of these pointers.
To access an object, you can call an object manager member function to
return the information to you. The object manager can then manage memory
usage and object reuse.

– Avoid copying large complex objects.

¹ When you use the Collection classes from the Open Class Libary to create
classes, use a high level of abstraction. After you establish the type of access to
your class, you can create more specific implementations. This can result in
improved performance with minimal code change.

¹ Use virtual functions only when they are necessary. They are usually compiled
to be indirect calls, which are slower than direct calls.

¹ Use try blocks for exception handling only when necessary because they can
inhibit optimization. Use the /Gx+ option to suppress the generation of exception
handling code in programs where it is not needed. Unless you specify this
option, some exception handling code is generated even for programs that do not
use catch or try blocks.

 Chapter 4. Optimizing Your Program 43

Improving Program Performance

¹ Avoid using overloaded operators to perform arithmetic operations on
user-defined types. The compiler cannot perform the same optimizations for
objects as it can for simple types.

¹ Avoid performing a deep copy if a shallow copy is all you require. For an object
that contains pointers to other objects, a shallow copy copies only the pointers
and not the objects to which they point. The result is two objects that point to
the same contained object. A deep copy, however, copies the pointers and the
objects they point to, as well as any pointers or objects contained within that
object, and so on. A simple assignment using an overloaded operator can
generate many lines of code.

¹ When you define structures or data members within a class, define the largest
data types first to align them on the doubleword boundary.

¹ Usually, you should not declare virtual functions inline. If all virtual functions in
a class are inline, the virtual function table of that class and all the virtual
function bodies will be replicated in each compilation unit that uses the class.

Choosing

Compiler

Options

The following list names the compiler options that can improve performance and
describes the action of each option.

Note: Of these options, only /Om- is a default.

Option Effect

/Gf+ Generates code for fast floating-point operations.

/Gi+ Generates code for fast integer operations.

/Gx+ For C++ programs only, suppresses generation of exception handling code.

/G[3|4|5] Optimize for the 386 (/G3), 486 (/G4), or Pentium (/G5) microprocessor.
Use the appropriate option for the processor you are using or plan to use. If
you do not know what processor your application will run on, use the /G3
option.

/O+ Turns on optimization for speed. Specifying /O+ also causes /Op+ (enable
optimizations involving the stack pointer), /Os+ (invoke the instruction
scheduler), and /Oi+ (inline user functions) to be specified.

/Oi+ Inlines user functions.

/Ol+ Passes code through the intermediate code linker. Using the intermediate
linker can result in better optimized code. For best results, use the /Gu+
option also to specify that data that is defined in the .DLL or .EXE being
built is not used by external functions. See the User's Guide for more
information about the intermediate linker.

/Om- Does not limit the working set size of the compiler so that the compiler can
inline more user code.

44 VisualAge C++ Programming Guide

Improving Program Performance

The following options improve the performance of your code by preventing the
generation of objects or information that can degrade performance. Note that these
are set by default:

Option Effect

/Gh- Prevents the generation of execution trace and analyzer hooks.
/Gr- Generates code to run in the usual operating system environment. If you

use /Gr+, the code generated runs at ring 0, and the performance suffers.
Some code, such as device drivers, must run at ring 0.

/Gv- Does not save and restore the DS and ES registers for external function
calls.

/Gw- Prevents the generation of FWAIT instruction after each floating-point load
instruction.

/Ti- Does not generate debug information.

If your program has only one thread, use the /Gs+ option to disable stack probes.
(/Gs- is the default.) Because the stack of the first thread is always fully committed,
stack probes are not necessary in single-thread programs. If your program has
multiple threads, stack probes serve a useful purpose and you should probably use
them. See the User's Guide for more information about stack probes.

If you link your executable files in a separate link step, specify the /BASE:65536
linker option to tell the linker your executable file will be loaded at 64K. The linker
can then resolve a number of references that would otherwise have to be resolved by
the loader at load time and by the pager as the program runs. When you use icc to
link your program, it specifies this option for you by default.

Note: Do not use the /BASE:65536 for DLLs.

Specifying

Linker

Options

Using the following linker options can lead to improved performance. When icc
invokes the linker, it passes these options by default:

/BASE:65536 Specify the starting address of the program. Because the OS/2
operating system always loads executable programs at 64K, you can
give the linker the address 65536 (or 0x10000). If the linker knows
where the program will be loaded, it can resolve relocation information
at link time, resulting in a smaller and faster executable module.

Note: If you use the /BASE option to compile DLLs, you may find
that there is no performance improvement. DLLs load more slowly if
the starting address that is specified for them is not their load address.
In addition, if the specified starting address for a DLL is too low, the
size of the private address space is reduced and there may not be much
heap available for you to use.

 Chapter 4. Optimizing Your Program 45

Improving Program Performance

/EXEPACK or /EXEPACK[1|2] Pack the .EXE or .DLL file. The size of the module is
reduced, thereby reducing load time. EXEPACK and /EXEPACK:1 are
equivalent, /EXEPACK:2 uses a more effective compression algorithm
but is available only under OS/2 Warp Version 3.0.

46 VisualAge C++ Programming Guide

Multithread Programs

 5 Creating Multithread Programs

This chapter describes how to use the VisualAge C++ compiler to create multithread
programs and discusses restrictions of the multithread environment. It also describes
the sample multithread program that you may have installed which is included with
the VisualAge C++ product. For instructions on how to compile and run the sample
program, see “Sample Multithread Program” on page 59.

Multithread programming is a feature of the OS/2 operating system and is supported
by the VisualAge C++ compiler with:

¹ Code generation and linking options. (See “Compiling and Linking Multithread
Programs” on page 59 for more information.)

¹ Multithread libraries. (See “Using the Multithread Libraries” on page 49 for
more information.)

No multithread support is available in the subsystem libraries.

What Is a Multithread Program?

A multithread program is one whose functions are divided among several threads. A
process is an executing application and the resources it uses, a thread is the smallest
unit of execution within a process. Other than its stack and registers, a thread owns
no resources; it uses those of its parent process. This chapter discusses threads,
references to processes are for contrast only.

Multithread programs allow more complex processing than single-thread programs.
In a single-thread program, all operations are performed serially. That is, one
operation begins when the preceding one has finished.

The advantage of having multiple threads are:

1. on multi-processor systems, that threads can execute concurrently. and thus the
entire multithread program is completed faster.

2. on single or multiple processor systems, that if any thread is blocked (waiting for
I/O to complete) then the rest of your application can continue to process or
respond to user data.

 Copyright IBM Corp. 1992, 1995 47

Multithread Programs

Although threads within a process share the same address space and files, each thread
runs as an independent entity and is not affected by the control flow of any other
thread in the process. Because a function from any thread can perform any task, such
as input or output, threads are well suited to programs that have multiple uses of the
same data or resources.

Thread

Control

There are three mechanisms for create and deleting threads under the
VisualAge C++:

¹ _beginthread and _endthread from the multithread libraries,

¹ DosCreateThread and DosExit from the OS/2 API, or

¹ IThread from the User Interface classes.

These are discussed in more detail below.

_beginthread and _endthread

The multithread libraries provide two functions, _beginthread and _endthread, to
create new threads and to end them. You should use _beginthread to create any
threads that call VisualAge C++ library functions. When the thread is started, the
library environment performs certain initializations that ensure resources and data are
handled correctly between threads.

The VisualAge C++ compiler does not limit the number of threads you can create,
but the OS/2 operating system does. The VisualAge C++ product also provides the
global variable _threadid that identifies your current thread, and the function
_threadstore that gives you a private thread pointer to which you can assign any
thread-specific data structure.

For more information on the number of threads allowed, see the online OS/2

Programming Reference. For more detail on the functions _endthread and
_beginthread, see the C Library Reference.

DosCreateThread and DosExit

You can also create threads with the DosCreateThread API. The function that is to
run on the thread created by DosCreateThread must have _System linkage. If you
need to start a new thread for a function with any other type of linkage, you cannot
use DosCreateThread.

Threads created by the DosCreateThread API do not have access to the resource
management facilities or to VisualAge C++ exception handling, you must use a
#pragma handler directive for the thread function to ensure correct exception
handling. You should also call _fpreset from the new thread to ensure the

48 VisualAge C++ Programming Guide

Using the Multithread Libraries

floating-point control word is set correctly for the thread. Although you can use
DosExit to end threads created with DosCreateThread, you should use _endthread
to ensure that the necessary cleanup of the environment is done.

IThread

The start member function of the IThread class is used to start additional threads.
This member function has three overloaded versions and three corresponding
constructors for:

¹ Functions compatible with _beginthread. That is, the functions which have
OS/2 linkage, take one argument of void* type, and return void.

¹ Functions compatible with DosCreateThread. That is, the functions which have
_System linkage, take one argument of unsigned long type, and return void.

¹ Any other function.

Because IThread can handle functions which fall under both of the previously
discussed thread control mechanisms, as well as being able to handle functions which
fall under neither, it is the preferred thread handling mechanism. It does not only
what other mechanisms do, it does it better. Unlike _beginthread, you don't have to
explicitly call _endthread to clean up the environment, and unlike
DosCreateThread, you don't have to write your own exception handler.

You can use the IThread class in your multithread programs to :

¹ Set thread priority
¹ Set thread attributes
¹ Do a reference count for objects dispatched on a thread so they are automatically

deleted when the thread ends
¹ Dispatch a member function of a C++ object on a separate thread
¹ Control other aspects of your threads.

 For a description of the IThread class and how to use it, see the Open Class

Library Reference.

Using the Multithread Libraries

VisualAge C++ compiler has two standard libraries that provide library functions for
use in multithread programs. The CPPOM30.LIB library is a statically linked
multithread library, and CPPOM30I.LIB is an import multithread library, with the
addresses of the functions contained in VisualAge C++ DLLs.

In addition to the above two standard libraries, the User Interface Class library is also
available in multithread form. A singlethread version of this library is not provided.

 Chapter 5. Creating Multithread Programs 49

Reentrant Functions

Not all of the VisualAge C++ Standard class libraries are available for multithread
programs. The Complex Mathematics library is available for both single- and
multithread programs. The single-thread Complex library is COMPLEX.LIB, while
the multithread version is COMPLEXM.LIB. The C++ I/O Stream library is built
into both the VisualAge C++ single-thread and the multithread runtime libraries. The
User Interface class library also offers an IThread class that is an encapsulation of
the OS/2 APIs for multithread programming.

When you use the multithread libraries, you have more to consider than with the
single-thread libraries. For example, because many library functions share data and
other resources, the access to these resources must be serialized (limited to one thread
at a time) to prevent functions from interfering with each other. Other functions can
affect all threads running within a process. Global variables and error handling are
also affected by the multithread environment.

 Reentrant Functions

Reentrant functions are those which can be suspended at any point and reentered,
after which they can return to that same point to resume processing, with no adverse
effects. Because these functions use only local variables, they cannot interfere with
each other. Access to these functions is not serialized.

All functions in the C++ Complex Mathematics Library are fully reentrant. The I/O
Stream Library functions are nonreentrant.

The following functions are reentrant:

absolut
acos
asctime
asin
assert
atan
atan2
atof

fstat
_ftime
_fullpath
gamma
_gcvt
_getcwd
_getdcwd
_getdrive

localtime
log
log10
_lrotl
_lrotr
lsearch
_ltoa
_makepath

stat
strcat
strchr
strcmp
strcmpi
strcoll
strcpy
strcspn

strupr
strxfrm
swab
tan
tanh
time
_toascii
tolower

atoi
atol
atold
bsearch
_cabs
ceil
chdir
_chdrive

getpid
gmtime
hypot
isalnum
isalpha
isascii
iscntrl
isdigit

mblen
mbstowcs
mbtowc
memccpy
memchr
memcmp
memcpy
memicmp

_strdate
strerror
_strerror
strftime
stricmp
strlen
strlwr
strncat

_tolower
toupper
_toupper
_tzset
_ultoa
utime
vsprintf
wait

50 VisualAge C++ Programming Guide

Nonreentrant Functions

Although the reentrant functions do not require serialization of data access, there is an
important exception: if you pass a pointer as a parameter, the function may no longer
be reentrant and may therefore require that access is serialized. In short, if you try to
use the same piece of memory (such as the memory pointed to by a pointer
parameter) from multiple threads, the results are unpredictable.

clock
cos
cosh
ctime
_cwait
difftime
div
_ecvt

isgraph
islower
isprint
ispunct
isspace
isupper
isxdigit
_itoa

memmove
memset
mkdir
mktime
modf
pow
qsort
rmdir

strncmp
strncpy
strnicmp
strnset
strpbrk
strrchr
strrev
strset

wcscat
wcschr
wcscmp
wcscpy
wcscspn
wcslen
wcsncat
wcsncmp

erf
erfc
exp
fabs
_fcvt
floor
fmod
_freemod
frexp

_j0
_j1
_jn
labs
ldexp
ldiv
lfind
_loadmod

_rotl
_rotr
sin
sinh
_splitpath
sprintf
sqrt
sscanf

strspn
strstr
_strtime
strtok
strtod
strtol
strtold
strtoul

wcsncpy
wcspbrk
wcsrchr
wcsspn
wcstombs
wctomb
_y0
_y1
_yn

 Nonreentrant Functions

Other nonreentrant library functions can access data or resources that are common to
all threads in the process, including files, environment variables, and I/O resources.
To prevent any interference among themselves, these functions use semaphores,
provided by the OS/2 operating system, to serialize access to data and resources.
Semaphores are described in detail in the online Control Program Guide and

Reference.

Operations involving file handles and standard I/O streams are serialized so that
multiple threads can send output to the same stream without intermingling the output.

 Chapter 5. Creating Multithread Programs 51

Nonreentrant Functions

Example of

Serialized I/O

If thread1 and thread2 execute the calls in the example below, the output could
appear in several different ways, but never garbled as shown at the end of the
example.

#include <stdio.h>

int done_1 = 0;
int done_2 = 0;

void _Optlink thread1(void)
{

fprintf(stderr,"This is thread 1\n");
fprintf(stderr,"More from 1\n");
done_1 = 1;

}

void _Optlink thread2(void)
{

fprintf(stderr,"This is thread 2\n");
fprintf(stderr,"More from 2\n");
done_2 = 1;

}

int main(void)
{

_beginthread(thread1, NULL, 4096, NULL);
_beginthread(thread2, NULL, 4096, NULL);

 while (1)
 {

if (done_1 && done_2)
 break;
 }
 return 0;
}

Figure 3 (Part 1 of 2). Example of Serialized I/O

52 VisualAge C++ Programming Guide

Nonreentrant Functions

/* Possible output could be:

This is thread 1
This is thread 2
More from 1
More from 2

or
This is thread 1
More from 1
This is thread 2
More from 2

or
This is thread 1
This is thread 2
More from 2
More from 1

The output will never look like this:

This is This is thrthread 1
 ead 2

More froMore m 2
 from 1 */

Figure 3 (Part 2 of 2). Example of Serialized I/O

Several nonreentrant functions have specific restrictions:

 ¹ The getc, getchar, putc, and putchar file I/O operations are implemented as
macros in the single-thread C libraries. In the multithread libraries, they are
redefined as functions to implement any necessary serialization of resources.

¹ Use the _fcloseall function only after all file I/O has been completed.

¹ When you use printf or vprintf and the subsystem libraries, you must provide
the necessary serialization for stdout yourself.

The functions in the C++ I/O Stream Library are also nonreentrant. To use these I/O
Stream objects in a multithread environment, you must provide your own serialization
either using the OS/2 semaphore APIs or the IResourceLock, IPrivateResource,
and ISharedResource classes from the User Interface classes.

 Chapter 5. Creating Multithread Programs 53

Global Variables in Multithread Programs

Process Control Functions

The process termination functions abort, exit, and _exit end all threads within the
process, not just the thread that calls the termination function. In general, you should
allow only thread 1 to terminate a process, and only after all other threads have
ended.

Notes:

1. If your program exits from a signal or exception handler it may be necessary to
terminate the process from a thread other than thread 1.

2. A routine that resides in a DLL must not terminate the process, except in the
case of a critical error. If the DLL and the executable for the process have
different runtime libraries, terminating the process from the DLL would bypass
any onexit or atexit functions that the executable may have registered.

Signal Handling in Multithread Programs

Signal handling, as described in Chapter 14, “Signal and OS/2 Exception Handling”
on page 217, also applies to the multithread environment. The default handling of
signals is usually either to terminate the program or to ignore the signal.
Special-purpose signal handling, however, can be complicated in the multithread
environment.

Signal handlers are registered independently on each thread. For example, if thread 1
calls signal as follows:

 signal(SIGFPE, handlerfunc);

then the handler handlerfunc is registered for thread 1 only. Any other threads are
handled using the defaults.

A signal is always handled on the thread that generated it, except for SIGBREAK,
SIGINT, and SIGTERM. These three signals are handled on the thread that
generated them only if they were raised using the raise function. If they were
raised by an exception, they will be handled on thread 1.

For more information and examples on handling signals, refer to Chapter 14, “Signal
and OS/2 Exception Handling” on page 217.

Global Data and Variables

The following two variables need to have a unique value for each thread in which
they are defined:

 ¹ errno
 ¹ _doserrno

54 VisualAge C++ Programming Guide

Global Variables in Multithread Programs

When a thread defines either of these two variables, it automatically gets its own
value for them that is not affected by the values that the variables might have in other
threads. Other variables, such as _environ are common across all threads and do not
automatically get unique values in each thread that uses them.

For example, the following program shows how the value of errno is unique to each
thread. Although an error occurs in the thread openProc, the value of errno is 0
because it is checked from the main thread.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>

int done = 0;

void _Optlink openProc(void * argument)
{

FILE *filePointer ;
filePointer = fopen("C:\\OS2","w");
printf("openProc, errno = %d\n",errno);
done = 1;

}

int main(void)
{
 char holder[80];

errno = 0 ;
 _beginthread(openProc,NULL,4096,NULL) ;

Figure 4 (Part 1 of 2). Example of a Per-Thread Variable

 Chapter 5. Creating Multithread Programs 55

Global Variables in Multithread Programs

while (1) /* Break only when the thread is done. */
 {

printf("Press <enter> to continue.\n");
 gets(holder);
 if (done)
 break ;

printf("The thread is still executing! \n");
 }

printf("Main program, errno = %d.\n",errno);
 return 0;

/* The expected output is:

Press <enter> to continue.
openProc, errno = 60

Main program, errno = 0. */

}

Figure 4 (Part 2 of 2). Example of a Per-Thread Variable

When you call longjmp, the buffer you pass to it must have been initialized by a call
to setjmp on the same thread. If the buffer was not initialized on the same thread,
the process terminates.

The internal buffers used by asctime, ctime, gmtime, and localtime are also
allocated on a per-thread basis. That is, these functions return addresses of buffers
that are specific to the thread from where the function was called.

There is one seed per thread for generating random numbers with the rand and
srand functions. This ensures that the pseudorandom numbers generated in each
thread are independent of other threads. Each thread starts with the same seed (1);
that is, each thread gets the same sequence of pseudorandom numbers unless the seed
is changed by a call to srand.

56 VisualAge C++ Programming Guide

Global Variables in Multithread Programs

Global

Variables

Requiring

Serialization

These global variables containing environment strings should be treated as
read-only data. They should only be modified by library functions:

 int _daylight;
 long _timezone;
 char *_tzname[2];

 char _osmajor;
 char _osminor;
 char _osmode;

 char **_environ;

Note: The _timezone variable contains the time difference (in seconds) between the
local time and Greenwich Mean Time (GMT).

The environment strings are copied from the OS/2 environment when a program
starts. This procedure is the same in multithread and single thread programs.
Because all threads share the environment strings, any change made to the strings by
one thread affects the environment accessed by the other threads.

to set the environment variables. Each thread can call getenv to obtain a copy of the
environment strings and copy the string to a private data buffer so that any later
changes to the environment by putenv will not affect it. If the thread must always
access the latest version of the environment strings, it must call getenv each time.

 The putenv and getenv functions are described in the C Library Reference.

Using

Common

Variables

User variables that are referenced by multiple threads should have the attribute
volatile to ensure that all changes to the value of the variable are performed
immediately by the compiler. For example, because of the way the compiler
optimizes code, the following example may not work as intended when compiled with
the /O+ option:

 Chapter 5. Creating Multithread Programs 57

Global Variables in Multithread Programs

static int common_var;

/* code executing in thread 1 */

common_var = 0;
 ...

common_var = 1;
 ...

common_var = 2;

/* code executing in thread 2 */

 switch (common_var)
 {
 case 0:
 ...
 break;
 case 1:
 ...
 break;
 default:
 ...
 break;
 }

When optimizing, the compiler may not immediately store the value 1 for the variable
common_var in thread 1. If it determines that common_var is not accessed by this
code until after the value 2 is stored, it may never store the value 1. Thread 2
therefore does not necessarily access the true value of common_var.

Declaring a variable as volatile indicates to the compiler that references to the
variable have side effects, or that the variable may change in ways the compiler
cannot determine. Optimization will not eliminate any action involving the volatile
variable, and changes to the value of the variable are then stored immediately.

58 VisualAge C++ Programming Guide

Sample Multithread Program

Compiling and Linking Multithread Programs

When you compile your multithread program, you must specify that you want to use
the multithread libraries described in “Using the Multithread Libraries” on page 49.
Because threads share data, the operating system and library functions must ensure
that only one thread is reading or writing data at one time. The multithread libraries
provide this support. (You can use these libraries for single-thread programs, but the
multithread support causes unnecessary overhead.)

To indicate that you want the multithread libraries, specify the /Gm+ compiler option.
For example:

icc /Gm+ mymulti.c

Conversely, the /Gm- option, which is the default, specifies explicitly to use the
single-thread version of the library.

If you intend to compile your source code into separate modules and then link them
into one executable program file, you must compile each module using the /Gm+
option and ensure that the multithread libraries are used when you link them. You
cannot mix modules that have been compiled with /Gm+ with modules compiled using
/Gm-.

You can use either static (/Gd-) or dynamic (/Gd+) linking with multithread
programs.

Sample Multithread Program

If you installed the sample programs, there will be created in your VisualAge C++
Samples folder, a project called SAMPLE2A and a second project called SAMPLE2B.
Make and debug these projects to see how they work. (For information on making
and debugging projects, see the User's Guide.)

Alternatively, you can build and run the samples from the command line. The files
for SAMPLE2A and SAMPLE2B are found in the \IBMCPP\SAMPLES\COMPILER\SAMPLE02
directory under the main VisualAge C++ directory. The read.me file in that
directory describes the process for running the programs from the command line.

 Chapter 5. Creating Multithread Programs 59

Sample Multithread Program

60 VisualAge C++ Programming Guide

Building DLLs

 6 Building Dynamic Link Libraries

Dynamic linking is the process of resolving references to external data and code at
runtime or loadtime instead of at link time. A dynamic link library is an object
module which can be shared by more than one process. You can dynamically link
with the supplied VisualAge C++ runtime DLLs, as well as with your own DLLs.
The advantages of using a dynamic link library include:

¹ smaller memory requirement as several applications can all share the same
dynamic link library instead of each application having its own copy of the
functions contained in the DLL.

¹ simplified application modification because modifications to an application's
object module does not necessitate recompilation of the DLL.

¹ flexible software support as DLL object modules can be replaced with newly
released, improved versions without forcing recompilation of the application
code.

There are basically two types of dynamic link libraries (DLLs) -- those which contain
code and those which do not. An example of the latter are resource DLL's which
contain no code, only resources such as menus or icons that are used by Presentation
Manager. Dynamic Link Libraries which contain code can be further classified along
three dimensions: whether they statically or dynamically link to the VisualAge C++
runtime, whether they support multithread or only singlethread executables, and
whether they use the full system or only the subsystem libraries.

This chapter describes the steps for creating and using a dynamic link library:

1. Creating the source files for a DLL
2. Creating a module definition file (.DEF) for the DLL
3. Compiling the source files and linking the resulting object files to build a .DLL

file
4. Using the DLL. When an application which uses the DLL is linked, the linker

must be informed that there are references to functions and/or variables that will
not be resolved until runtime. The linker is informed either by indicating an
import library file (.LIB) for the DLL, or by indicating a module definition file
for the external module to be used when linking. The section of this chapter on
using your DLL, explains how you create the library file and the the module
definition file.

This chapter also provides information on: how to create your own DLL initialization
and termination function, your own library DLLs, and your own resource DLLs.

 Copyright IBM Corp. 1992, 1995 61

Creating DLL Source Files

Examples are provided throughout the chapter to illustrate the process.

The examples shown are from the SAMPLE03 project. If you installed the sample
programs, you will find the SAMPLE03 project in the VisualAge C++ Samples folder.
For information on how to build and debug a project, see the User's Guide

Alternatively, you can compile, link, and run the sample from the command line.
The files for SAMPLE03 are found in the \IBMCPP\SAMPLES\COMPILER\SAMPLE03
directory under the main VisualAge C++ directory, along with a readme file that
describes the process.

Creating DLL Source Files

To build a DLL, you must first create source files containing the data and/or
functions that you want to include in your DLL. No special file extension is required
for DLL source files. The source code can be written in C or C++.

Each function that you want to export from the DLL (that is, a function that you plan
to call from other executable modules or DLLs) must be an external function, either
by default or by being qualified with the extern keyword. Otherwise, the linker will
not find your function references and will generate errors.

If your DLL and the modules that access it do not dynamically link to the same
runtime DLL, you must use the #pragma handler directive to ensure OS/2
exceptions are handled properly within your DLL. Use #pragma handler at the
entry point of each DLL function to register the library exception handler
_Exception. On exit from the function, code will also be generated to deregister
_Exception.

Note: You need to explicitly register the exception handler only for the functions
that will be exported from the DLL.

 For more information on #pragma handler, see the online Language Reference.
For information on exception handling, see Chapter 14, “Signal and OS/2 Exception
Handling” on page 217.

Example of a DLL Source File

The file SAMPLE03.C is the source file for the DLL used in the SAMPLE03 project in
the VisualAge C++ SAMPLES folder. The file can be found in the
\IBMCPP\SAMPLES\COMPILER\SAMPLE03 directory under the main VisualAge C++
directory.

62 VisualAge C++ Programming Guide

Module Definition Files

The source file contains the code for:

¹ Three sorting functions: bubble, insertion, and selection
¹ Two static functions, swap and compare, that are called by the sorting functions
¹ A function, list, that lists the contents of an array.

Creating a Module Definition File

A module definition (.DEF) file is a plain text file that describes the names, attributes,
exports, imports, and other characteristics of an application or dynamic link library.
You must use a module definition file when you create any OS/2 DLL.

Example of a Module Definition File

The .DEF file for the SAMPLE03 program is shown here to illustrate the most common
statements used in a module definition file to build DLLs. For a complete
description of module definition files, refer to the User's Guide for the
VisualAge C++ linker utility.

LIBRARY SAMPLE03 INITINSTANCE TERMINSTANCE
PROTMODE
DATA MULTIPLE NONSHARED READWRITE LOADONCALL
CODE LOADONCALL
EXPORTS

nSize ; array size
pArray ; pointer to base of array of ints
nSwaps ; number of swaps required to sort the array
nCompares ; number of comparisons required to sort the array
list ; array listing function
bubble ; bubble sort function
insertion ; insertion sort function

Figure 5. SAMPLE03.DEF - DLL Module Definition File

Note: In this module definition file, the EXPORTS statement does not include the
selection function because the source code contains a #pragma export statement
for selection.

 Chapter 6. Building Dynamic Link Libraries 63

Module Definition Files

The module statements specified in the .DEF file are as follows:

LIBRARY SAMPLE03 INITINSTANCE TERMINSTANCE
This statement identifies the executable file as a dynamic link library and
specifies that SAMPLE03 is the name of the DLL. It also uses the
following attributes to specify when the _DLL_InitTerm function will be
called:

INITINSTANCE
The function is called the first time the DLL is loaded for each
process that accesses the DLL. The alternative is INITGLOBAL; the
function is called only the first time the DLL is loaded.

INITGLOBAL is the default.

TERMINSTANCE
The function is called the last time the DLL is freed for each process
that accesses the DLL. The alternative is TERMGLOBAL; the function
is called only the final time the DLL is freed.

TERMGLOBAL is the default.

PROTMODE
This statement specifies that the DLL can be run in protected (OS/2)
mode only.

DATA MULTIPLE NONSHARED READWRITE LOADONCALL
This statement defines the default attributes for data segments within the
DLL. The attributes are:

MULTIPLE
Specifies that there is a unique copy of the data segment for each
process. The alternative is SINGLE; there is only one data segment
for all processes to share.

SINGLE is the default for DLL's.

MULTIPLE is the default for applications.

NONSHARED
Specifies that the data segment cannot be shared and must be loaded
separately for each process. The alternative is SHARED; one copy of
the segment is loaded and shared by all processes that access the
module.

SHARED is the default for DLLs, NONSHARED is the default for
applications.

Note that if you use the READONLY attribute, data segments are
always shared.

64 VisualAge C++ Programming Guide

Module Definition Files

Note: If the two above data segment attributes conflict, such as
SINGLE NONSHARED or MULTIPLE SHARED, the behaviour is
undefined.

READWRITE
Means that you can read from or write to the data segment. The
alternative is READONLY; you can only read from the data segment.

READWRITE is the default.

LOADONCALL
Means that the data segment is loaded into memory when it is first
accessed. LOADONCALL is the default.

Note: You can also specify PRELOAD, but Version 2.0 and later of
the OS/2 operating system ignore the PRELOAD attribute and use the
LOADONCALL instead.

See “Defining Code and Data Segments” on page 66 for information on
defining your own data segments.

CODE LOADONCALL
This statement defines the default attributes for code segments within the
DLL. LOADONCALL means that the code segment is loaded when it is
first accessed. LOADONCALL is the default.

Note: You can also specify PRELOAD, but Version 2.0 and later of the
OS/2 operating system ignore the PRELOAD attribute and use the
LOADONCALL instead.

For information on defining your own code segments, see “Defining Code
and Data Segments” on page 66.

EXPORTS
This statement defines the names of the functions and variables to be
exported to other runtime modules. Following the EXPORTS keyword are
the export definitions, which are simply the names of the functions and
variables that you want to export. Each name must be entered on a
separate line. See “Defining Functions to be Exported” on page 66 for
more information.

Note: When you build your DLL using /Gd-, so that it is statically linked to the
runtime library, you must specify the following attributes in your .DEF file:

 INITINSTANCE
 TERMINSTANCE

DATA MULTIPLE NONSHARED

 Chapter 6. Building Dynamic Link Libraries 65

Module Definition Files

Defining Code and Data Segments

In the .DEF file shown, all data and code segments are given the same attributes. If
you want to specify different attributes for different sets of data or code, you can use
the #pragma data_seg and #pragma alloc_text directives to define your own data
and code segments, or the /Nd and /Nt compiler options to specify the name of the
default data or code segments, respectively. You can then list the segments in the
.DEF file under the heading SEGMENTS, and specify attributes for each. For example:

 SEGMENTS
mydata SHARED READONLY

 mycode PRELOAD

Any segments that you do not specify under SEGMENTS are given the attributes
specified by the DATA or CODE statement, depending on the type of segment.

For more information about #pragma data_seg and pragma alloc_text, see the
online Language Reference. The /Nd and /Nt options are described in the User's

Guide.

Defining Functions to be Exported

When you export a function from a DLL, you make it available to programs that call
the DLL. If you do not export a function, it can only be used within the DLL itself.

To export a function, list its name under the EXPORTS keyword in the .DEF file as
described below. Note that if your DLL is written in C++, you must specify the
mangled or encoded name of the function. A utility is provided to assist you with
this task. For an explanation of how to use the CPPFILT utility to mangle and
demangle function names, see “Demangling (Decoding) C++ Function Names” on
page 394.

You can also use #pragma export or the _Export keyword to specify that a function
is to be exported. For example, in SAMPLE03.C, the function selection is declared
to be exported by a #pragma export directive. The #pragma directive also allows
you to specify the name the exported function will have outside of the DLL and its
ordinal number. When you use the keyword or #pragma directive for C++ functions,
use the normal function name, not the encoded name.

66 VisualAge C++ Programming Guide

Compiling and Linking Your DLL

If you use #pragma export or _Export to export your function, you may still need
to provide an EXPORTS entry for that function. If your function has all of the
following default characteristics

¹ Has no I/O privileges, and
¹ Is exported by ordinal. (If this is the case, you do not want the system loader to

also keep its name resident in memory.)

it does not require an EXPORTS entry. If your function has characteristics other than
the defaults, the only way you can specify them is with an EXPORTS entry in your
.DEF file.

 For more information about _Export and #pragma export, see the online
Language Reference.

Additional C++ Considerations

For C++ DLLs, ensure that you export all member functions that are required. If an
inlined or exported function uses private or protected members, you must also export
those members. In addition, you should export all static data members. If you do not
export the static data members of a particular class, users of that class cannot debug
their code because the reference to the static data members cannot be resolved.

Compiling and Linking Your DLL

To compile your source files to create a DLL, use the /Ge- compiler option. You
may also want to use the /C+ option to compile your files without linking them, and
then link them separately.

You must also specify the runtime libraries you want to use:

¹ Single-thread (/Gm-) or multithread (/Gm+). See Chapter 5, “Creating
Multithread Programs” on page 47 for information on multithread libraries.

¹ Statically linked (/Gd-) or dynamically linked (/Gd+). See the User's Guide

for more information on static and dynamic linking.

Note: The method of linking used for the runtime libraries is independent of the
module type you create; you can statically link the runtime functions in a
dynamic link library.

 For more information on compiler options, see the User's Guide.

If your DLL contains C++ code that uses templates, there are additional
considerations. See “Creating C++ DLLs” on page 69 for details on creating a C++
DLL.

 Chapter 6. Building Dynamic Link Libraries 67

Compiling and Linking Your DLL

When you use icc to compile and link your DLL, you must specify on the command
line all the DLL source files followed by the module definition file. The name of the
first source file (without the file name extension) is used as the name of the DLL.

For example, to compile and link the files mydlla.c and mydllb.c, using the
mydll.def module definition file, use the command:

icc /Ge- mydlla.c mydllb.c mydll.def

The resulting DLL will be called mydlla.dll.

Note: The /Ge- option tells the compiler you are building a DLL, rather than an
executable file. The options to indicate the single-thread library (/Gm-) and to link
the runtime libraries statically (/Gd-) are the defaults.

If you are compiling and linking separately, you must give the following information
to the VisualAge C++ linker:

¹ The compiled object (.OBJ) files for the DLL
¹ The name to give the DLL
¹ The C libraries to use
¹ The name of the module definition file.

Note: The compiler includes information in the object files on the C libraries you
indicated by the compiler options that control code generation (see the User's Guide).
These libraries are automatically used at link time. You do not need to specify C
runtime libraries on the linker command line unless you want to override the ones
you chose at compile time.

For example, the following commands: create the DLL finaldll.dll.

icc /C+ /Ge- mydlla.c mydllb.c
ILINK /NOI mydlla.obj mydllb.obj mydll.def /OUT:finaldll.dll

These commands:

¹ Compile the source files mydlla.c and mydllb.c
¹ Link the resulting object files with the single-thread, statically linked C libraries,

using the definition file mydll.def

The preferred method is to use icc to both compile and invoke the linker for you
You could use icc to both compile and invoke the linker for you with the following
command:

icc /Ge- /Fefinal.dll mydlla.c mydllb.c mydll.def

Note: The icc command passes the linker option /NOI to the linker by default. The
/NOI option preserves the case of external names.

68 VisualAge C++ Programming Guide

C++ DLLs

Creating C++ DLLs

When your DLL is written in C++, there are considerations that do not apply to DLLs
written in C. You must ensure that classes and class members are exported correctly,
especially if they use templates.

You can build C++ DLLs in one of two ways:

¹ Using the _Export keyword and #pragma export
¹ Using the CPPFILT utility to create a .DEF file.

The SAMPLE07 project provides examples of both methods of building C++ DLLs.
The files for SAMPLE07 can be found in the \IBMCPP\SAMPLES\COMPILER\SAMPLE07
directory.

Using _Export and #pragma export

This is the simplest method of creating a C++ DLL:

1. Use _Export or #pragma export in your source files to specify the classes and
functions (including member functions) that you want to export from your DLL.
For example:

class triangle : public area
 {
 public:

static int _Export objectCount;
double _Export getarea();

 _Export triangle::triangle(void);
 };

exports the getarea function and the constructor for class triangle.
Alternatively, you could use #pragma export:

 #pragma export(triangle::objectCount(),,1)
 #pragma export(triangle::getarea(),,1)
 #pragma export(triangle::triangle(void),,2)

Important: You must always export constructors and destructors.

 The _Export keyword and #pragma directive are described in more detail in
the online Language Reference.

2. Create a .DEF file as described in “Creating a Module Definition File” on
page 63. Do not specify any entries under EXPORTS.

3. Use icc to compile and link the DLL. If you use any of the Complex,
Collection, or User Interface class libraries, you must specify the library names
on the command line for the link step. If you link in a separate step, you must
also specify the /Tdp option.

 Chapter 6. Building Dynamic Link Libraries 69

C++ DLLs

The SAMPLE07, METHOD1 project in the VisualAge C++ SAMPLES folder demonstrates
this method. Build and run it to see how it works. For directions on building and
running a project, see the User's Guide.

Alternatively, you can compile and link this sample from the command line. The
SAMPLE07 files corresponding to the SAMPLE07, METHOD1 project can be found in the
\IBMCPP\SAMPLES\COMPILER\SAMPLE07 directory under the main VisualAge C++
directory. The readme file in that directory gives instructions for running the sample
from the command line.

 Using CPPFILT

To build a DLL using the CPPFILT utility:

1. Compile your source files as you would for any DLL.

2. If you use templates, compile the template-include files located in the TEMPINC
directory under the source directory. These files contain the implementation of
all instantiated templates that are used in the files you compiled and are needed
when you link your DLL.

3. Copy the objects created from the template-include files into the directory with
your other DLL objects.

4. Run CPPFILT on all your object files together. Because CPPFILT sends output
to stdout, ensure you redirect the output to a file. For example:

CPPFILT /B /P file1.obj file2.obj > cppdll.def

The /B option specifies that the files are binary, and the /P option specifies to
include all public symbols in the CPPFILT output. For more details on the
CPPFILT utility, see “Using the CPPFILT Utility” on page 395.

5. Edit the output file. Delete entries for functions and variables that you do not
want to export from your DLL. Then create a .DEF file, specifying the
remaining entries under the EXPORTS heading.

6. Use icc to link your objects, libraries, and .DEF file into a DLL. If you use any
of the Complex, Collection, or User Interface classes, you must specify the
library names on the command line. You must also specify the /Tdp option.

7. Erase the template-include objects that you have included in the DLL so they are
not linked into any applications that use your DLL. Alternatively, use the /Ft-
option when you link the accessing applications. If these objects are included
more than once, the linker will generate error messages about multiply-defined
symbols.

70 VisualAge C++ Programming Guide

C++ DLLs

The SAMPLE07, METHOD2 project in the VisualAge C++ SAMPLES folder demonstrates
this method. Build and run the project to see how it works. For directions on
building and running a project, see the User's Guide.

Alternatively, you can compile and link this sample from the command line. To
compile and link this sample, follow the directions contained in the readme file in the
\IBMCPP\SAMPLES\COMPILER\SAMPLE07 directory. The SAMPLE07 files corresponding to
the SAMPLE07, METHOD2 project can be found in the
\IBMCPP\SAMPLES\COMPILER\SAMPLE07 directory under the main VisualAge C++
directory.

Exporting Virtual Function Tables from a DLL

Follow these steps to export a VFT from a DLL:

¹ A virtual function table (VFT) is usually generated in the compilation unit that
defines the first non-inline virtual function in a class. You can use the /Wvft
option to find out which function that is. The object file that contains the
definition for this function will also contain the VFT.

¹ Once you know which object file contains the VFT, you can use CPPFILT to
dump the symbols in the object file. One of these symbols will be the name of
the VFT that you want to export.

¹ After you have determined what the name of the VFT is, you can either use the
output of CPPFILT directly in the .DEF file or you can manually add an entry
for the VFT in the .DEF file.

An example of the symbols dumped by CPPFILT

;From object file: os2prod\object.obj
;PUBDEFs (Symbols available from object file):

 ; ComentObjectRecord::OMFExtensions::getRecordData() const
 getRecordData__Q2_18ComentObjectRecord13OMFExtensionsCFv
 ; ObjRecNameField::ObjRecNameField(const char*)
 __ct__15ObjRecNameFieldFPCc

; PubDef16ObjectRecord::getRecordData(unsigned char*&) const
 getRecordData__20PubDef16ObjectRecordCFRPUc

; LNamesObjectRecord::LNamesObjectRecord(unsigned int,const unsigned char*)
 __ct__20PubDef16ObjectRecordFUlPCUc
 ; {PubDef32ObjectRecord}ObjectRecord::virtual-fn-table-ptr
 __vft20PubDef32ObjectRecord12ObjectRecord

; PubDef32ObjectRecord::PubDef32ObjectRecord(unsigned long,const unsigned char*)
 setNameString__15ObjRecNameFieldFPCc

; PubDef32ObjectRecord::getRecordData(unsigned char*&) const
 getRecordData__20PubDef32ObjectRecordCFRPUc
 ; {ComDefObjectRecord}ObjectRecord::virtual-fn-table-ptr
 __vft18ComDefObjectRecord12ObjectRecord

 Chapter 6. Building Dynamic Link Libraries 71

Using Your DLL

An example of VFTs in the .DEF file.

 NAME object WINDOWCOMPAT
 PROTMODE

 IMPORTS
 ; {PubDef32ObjectRecord}ObjectRecord::virtual-fn-table-ptr
 __vft20PubDef32ObjectRecord12ObjectRecord
 ; {ComDefObjectRecord}ObjectRecord::virtual-fn-table-ptr
 __vft18ComDefObjectRecord12ObjectRecord

Using Your DLL

Write the source files that are to access your DLL as if the functions and/or variables
are to be statically linked at compile time. Then when you link the program, you
must inform the linker that some function and/or variable references are to a DLL and
will be resolved at run time. There are two ways to communicate this information to
the linker:

1. Use the IMPLIB utility to create a library file with all the information that the
linker needs about the DLL. The IMPLIB utility uses a module definition file to
create an import library (.LIB) file for the DLL. When you link an executable
module, the linker uses this import library to resolve external references to the
DLL.

If your DLL contains any C++ templates, you must always access the DLL by
means of an import library to ensure that the names you use when you instantiate
the template are resolved correctly.

If you invoke the linker directly, give the name of the import library where you
normally specify library names. For example:

ILINK /NOI mymain.obj finaldll.lib;

If you invoke the linker through the icc command, you must put the name of the
import library in the compiler invocation string. For example:

icc mymain.c finaldll.lib

 See the User's Guide for more information on IMPLIB.

Note: The import libraries for the VisualAge C++ runtime DLLs have been
supplied with the compiler.

72 VisualAge C++ Programming Guide

Using Your DLL

2. Construct a module definition file for the accessing module that is being linked.
The definition file specifies which variables and names will be obtained from a
DLL at run time, and in which DLLs these items will be found. In general,
import libraries are easier to use and maintain than module definition files.

Note: To make functions in a DLL available to other programs, the name of those
functions must have been exported (using #pragma export or the _Export keyword
in the source file, or with an EXPORT entry in the .DEF file) when the DLL was
linked. Also, all DLLs must be in a directory listed in the LIBPATH environment
variable (as described in Chapter 1, “Setting Runtime Environment Variables” on
page 3).

Deciding the Best Way to Export Functions from Your DLL

There are three different ways to export the functions in a DLL so that they are
available to other programs:

1. Using a .DEF file. With this method, the functions are exported by name. It can
be difficult to write and maintain C++ .DEF files because you must use the
mangled names of the functions that you want to export.

2. Using the _Export keyword in the source files. With this method, you can only
export the functions by ordinal. Furthermore, you cannot control which ordinal is
assigned to a particular function. This is the easiest method for exporting
functions, but it can cause problems if other programs that use the DLL depend
on a particular set of ordinals. If the DLL has to be updated, the compiler may
assign different ordinals to the exported functions.

3. Using #pragma export in the source files. With this method, you can only
export the functions by ordinal, but you have the choice of choosing the ordinal
for a function yourself or letting the compiler choose it for you. With this
method, you can specify the assignment of ordinals to exported functions. When
you update a DLL, you can keep these assignments. This means that programs
that use functions from this DLL will not have to be updated when the DLL is
updated.

The advantage of using a .DEF file to export functions is that changing the DLL will
not affect other programs that use functions in the DLL. The disadvantage of using a
.DEF file is that the load time can be greater for the code that uses the DLL, and it
takes time to create the .DEF file itself.

 Chapter 6. Building Dynamic Link Libraries 73

Using Your DLL

Sample Definition File for an Executable Module

The following figure shows the module definition file used for the main program in
the sample project SAMPLE03.

NAME MAIN03 WINDOWCOMPAT

IMPORTS
 SAMPLE03.nSize
 SAMPLE03.pArray
 SAMPLE03.nSwaps
 SAMPLE03.nCompares
 SAMPLE03.list
 SAMPLE03.bubble
 SAMPLE03.insertion

Figure 6. MAIN03.DEF - Definition File for an Executable Module

Note: There is no statement to import the selection function because it is imported
using #pragma import statement in the source code.

The statements given are as follows:

NAME MAIN03 WINDOWCOMPAT
The NAME statement assigns the name MAIN03 to the program being
defined. If no name is given, the name of the executable module
(without the .EXE extension) is used. WINDOWCOMPAT specifies that the
program is compatible with the PM environment. The alternatives are
NOTWINDOWCOMPAT, which means the program is not compatible with the
PM environment, or WINDOWAPI, which means the program uses PM
APIs.

IMPORTS
This statement defines the names of functions and variables to be
imported for the program. Following the IMPORTS keyword are the
import definitions. Each definition consists of the name of the DLL
where the function or variable is found and the name of the function or
variable. The two names must be separated by a period, and each
definition must be entered on a separate line.

74 VisualAge C++ Programming Guide

Initializing/Terminating the DLL Environment

You can also use #pragma import to specify that a function is imported
from a DLL. You can use this #pragma directive to import the function
by name or by ordinal number.

 For a detailed description of #pragma import, see the online
Language Reference. For an example of using this pragma, see
MAIN03.C, the main program for the SAMPLE03 project.

Initializing and Terminating the DLL Environment

The initialization and termination entry point for a DLL is the _DLL_InitTerm
function. When each new process gains access to the DLL, this function initializes
the necessary environment for the DLL, including storage, semaphores, and variables.
When each process frees its access to the DLL, the _DLL_InitTerm function
terminates the DLL environment created for that process.

The default _DLL_InitTerm function supplied by VisualAge C++ compiler performs
the actions required to initialize and terminate the runtime environment. It is called
automatically when you link to the DLL.

If you require additional initialization or termination actions for your runtime
environment, you will need to write your own _DLL_InitTerm function. For more
information, see “Writing Your Own _DLL_InitTerm Function” on page 77. A
sample _DLL_InitTerm function is included for the SAMPLE03 project (see “Example
of a User-Created _DLL_InitTerm Function” on page 79.)

Note: The _DLL_InitTerm function provided in the subsystem library differs from
the runtime version. See “Building a Subsystem DLL” on page 208 for more
information about building subsystem DLLs.

 Chapter 6. Building Dynamic Link Libraries 75

Sample Program to Build a DLL

Sample Program to Build a DLL

The sample project SAMPLE03 shows how to build and use a DLL that contains three
different sorting functions. These functions keep track of the number of swap and
compare operations required to do the sorting.

The files for the sample program are:

SAMPLE03.C The source file for the DLL, described in “Example of a DLL
Source File” on page 62.

INITTERM.C The _DLL_InitTerm function, shown in “Example of a User-Created
_DLL_InitTerm Function” on page 79.

SAMPLE03.DEF The module definition file for the DLL, shown in “Creating a
Module Definition File” on page 63.

MAIN03.DEF The module definition file for the executable, shown in “Sample
Definition File for an Executable Module” on page 74.

SAMPLE03.H The user include file.

MAIN03.C The main program.

If you installed the sample programs, these files are found in the
\IBMCPP\SAMPLES\COMPILER\SAMPLE03 directory under the main VisualAge C++
directory. Two make files that build the sample are also provided, MAKE03S for static
linking and MAKE03D for dynamic linking.

Note: You must have the Toolkit installed to use the make files.

To compile and link this sample program, from the
\IBMCPP\SAMPLES\COMPILER\SAMPLE03 directory, use NMAKE with the appropriate
make file. For example:

nmake all /f MAKE03S

76 VisualAge C++ Programming Guide

To compile and link the program yourself, use the following commands:

The /NOE linker option tells the linker to ignore the extended library information
found in the object files. The linker then uses the version of _DLL_InitTerm that you
provide instead of the one from the VisualAge C++ runtime library.

To run the program, enter MAIN03.

Command Description

icc /Ge- /B"/NOE" /DSTATIC_LINK SAMPLE03.C
INITTERM.C SAMPLE03.DEF

Compiles and links SAMPLE03.C
using default options and

¹ Creates a DLL (/Ge-)
¹ Passes the /NOE option to the

linker (see description below)
 ¹ Defines STATIC_LINK.

icc MAIN03.C MAIN03.DEF Compiles MAIN03.C using default
options.

Writing Your Own _DLL_InitTerm Function

If your DLL requires initialization or termination actions in addition to the actions
performed for the runtime environment, you will need to create your own
_DLL_InitTerm function. The prototype for the _DLL_InitTerm function is:

unsigned long _System. _DLL_InitTerm(unsigned long modhandle,
unsigned long flag);

If the value of the flag parameter is 0, the DLL environment is initialized. If the
value of the flag parameter is 1, the DLL environment is ended.

The modhandle parameter is the module handle assigned by the operating system for
this DLL. The module handle can be used as a parameter to various OS/2 API calls.
For example, DosQueryModuleName can be used to return the fully qualified path
name of the DLL, which tells you where the DLL was loaded from.

The return code from _DLL_InitTerm tells the loader if the initialization or
termination was performed successfully. If the call was successful, _DLL_InitTerm
returns a nonzero value. A return code of 0 indicates that the function failed. If a
failure is indicated, the loader will not load the program that is accessing the DLL.

Because it is called by the operating system loader, the _DLL_InitTerm function must
be compiled using _System linkage.

 Chapter 6. Building Dynamic Link Libraries 77

Note: A _DLL_InitTerm function for a subsystem DLL has the same prototype, but
the content of the function is different because there is no runtime environment to
initialize or terminate. For an example of a _DLL_InitTerm function for a subsystem
DLL, see “Example of a Subsystem _DLL_InitTerm Function” on page 209.

Initializing the Environment

Before you can call any VisualAge C++ library functions, you must first initialize the
runtime environment. Use the function _CRT_init, which is provided in the runtime
libraries. The prototype for this function is:

 int _CRT_init(void);

If the runtime environment is successfully initialized, _CRT_init returns 0. A return
code of -1 indicates an error. If an error occurs, an error message is written to file
handle 2, which is the usual destination of stderr.

If your DLL contains C++ code, you must also call __ctordtorInit after _CRT_init
to ensure that static constructors and destructors are initialized properly. The
prototype for __ctordtorInit is:

 void __ctordtorInit(void);

Note: If you are providing your own version of the _matherr function to be used in
your DLL, you must call the _exception_dllinit function after the runtime
environment is initialized. Calling this function ensures that the proper _matherr
function will be called during exception handling. The prototype for this function is:

void _Optlink _exception_dllinit(int (*)(struct exception *));

The parameter required is the address of your _matherr function.

Terminating the Environment

If your DLL is statically linked, you must use the _CRT_term function to correctly
terminate the C runtime environment. The _CRT_term function is provided in the
VisualAge C++ runtime libraries. It has the following prototype:

 void _CRT_term(void);

If your DLL contains C++ code, you must also call __ctordtorTerm before you call
_CRT_term to ensure that static constructors and destructors are terminated correctly.
The prototype for __ctordtorTerm is:

 void __ctordtorTerm(void);

78 VisualAge C++ Programming Guide

Once you have called _CRT_term, you cannot call any other library functions.

If your DLL is dynamically linked, you cannot call library functions in the
termination section of your _DLL_InitTerm function. If your termination routine
requires calling library functions, you must register the termination routine with
DosExitList. Note that all DosExitList routines are called before DLL termination
routines.

Example of a User-Created _DLL_InitTerm Function

The following figure shows the _DLL_InitTerm function for the sample project
SAMPLE03.

#define INCL_DOSMODULEMGR
#define INCL_DOSPROCESS
#include <os2.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

/* _CRT_init is the C run-time environment initialization function. */
/* It will return 0 to indicate success and -1 to indicate failure. */

int _CRT_init(void);
#ifdef STATIC_LINK

/* _CRT_term is the C run-time environment termination function. */
/* It only needs to be called when the C run-time functions are statically */
/* linked. */

void _CRT_term(void);
#else

/* A clean up routine registered with DosExitList must be used if runtime */
/* calls are required and the runtime is dynamically linked. This will */
/* guarantee that this clean up routine is run before the library DLL is */
/* terminated. */

static void _System cleanup(ULONG ulReason);
#endif
size_t nSize;
int *pArray;

Figure 7 (Part 1 of 3). INITTERM.C - _DLL_InitTerm Function for SAMPLE03

 Chapter 6. Building Dynamic Link Libraries 79

/* _DLL_InitTerm is the function that gets called by the operating system */
/* loader when it loads and frees this DLL for each process that accesses */
/* this DLL. However, it only gets called the first time the DLL is loaded */
/* and the last time it is freed for a particular process. The system */
/* linkage convention MUST be used because the operating system loader is */
/* calling this function. */

unsigned long _System _DLL_InitTerm(unsigned long hModule, unsigned long
 ulFlag)
{
 size_t i;
 APIRET rc;
 char namebuf[CCHMAXPATH];

/* If ulFlag is zero then the DLL is being loaded so initialization should*/
/* be performed. If ulFlag is 1 then the DLL is being freed so */
/* termination should be performed. */

switch (ulFlag) {
case 0 :

 /***/
/* The C run-time environment initialization function must be */
/* called before any calls to C run-time functions that are not */

 /* inlined. */
 /***/

if (_CRT_init() == -1)
 return 0UL;
#ifndef STATIC_LINK

 /***/
/* A DosExitList routine must be used to clean up if runtime calls */
/* are required and the runtime is dynamically linked. */

 /***/

if (rc = DosExitList(0x0000FF00|EXLST_ADD, cleanup))
printf("DosExitList returned %lu\n", rc);

#endif
if (rc = DosQueryModuleName(hModule, CCHMAXPATH, namebuf))

printf("DosQueryModuleName returned %lu\n", rc);
 else

printf("The name of this DLL is %s\n", namebuf);

Figure 7 (Part 2 of 3). INITTERM.C - _DLL_InitTerm Function for SAMPLE03

80 VisualAge C++ Programming Guide

 srand(17);
nSize = (rand()%128)+32;
printf("The array size for this process is %u\n", nSize);
if ((pArray = malloc(nSize *sizeof(int))) == NULL) {

printf("Could not allocate space for unsorted array.\n");
 return 0UL;
 }

for (i = 0; i < nSize; ++i)
pArray[i] = rand();

 break;
case 1 :

#ifdef STATIC_LINK
printf("The array will now be freed.\n");

 free(pArray);
 _CRT_term();
#endif
 break;
 default :

printf("ulFlag = %lu\n", ulFlag);
 return 0UL;
 }

/* A non-zero value must be returned to indicate success. */

 return 1UL;
}
#ifndef STATIC_LINK
static void cleanup(ULONG ulReason)
{

if (!ulReason) {
printf("The array will now be freed.\n");

 free(pArray);
 }
 DosExitList(EXLST_EXIT, cleanup);
 return ;
}
#endif

Figure 7 (Part 3 of 3). INITTERM.C - _DLL_InitTerm Function for SAMPLE03

The SAMPLE03 program is described in more detail in “Sample Program to Build a
DLL” on page 76.

 Chapter 6. Building Dynamic Link Libraries 81

Creating Resource DLLs

Creating Resource DLLs

Resource DLLs contain application resources that your program uses, such as menus,
bitmaps, and dialog templates. You can define these resources in a .RC file using
OS/2 APIs, or with the Icon Editor and Dialog Editor. Use the Resource Compiler to
build the resources into a DLL, which is then called by your executable program at
run time.

One of the benefits of using a resource DLL instead of binding the resources directly
into your executable file includes easier maintenance and less duplication of
resources. You may even be able to use a common resource DLL for multiple
applications.

Another benefit is that you can completely isolate your program from your resources.
Translations can be made to your resource DLL without your program having to be
recompiled or linked, or even re-bound to run in the new language. Alternatively,
you can create a different resource DLL per locale or codepage setting and load either
the most appropriate one based on your locale and codepage setting, or load the
default one if a specific one is not available.

For instance, you could have three resource DLLs: my844.DLL, my029.DLL, and
myDef.dll. If running in codepage 844, load my844.DLL; in codepage 029, load
my029.DLL; else load mydef.DLL. Again, no changes are required to the program to
work in a potentially endless number of codepages.

To create a resource DLL:

1. Create an empty source file. By "empty" we mean a file with no code, no
declarations or the like. The file must be empty because it is being included in a
resource DLL and a resource DLL can contain only resources.

2. Create a .DEF file. The only statement required in this file is LIBRARY to specify
that a DLL is to be built.

3. Create a .RC file that defines your resources.

4. Compile the source file using /C+ to specify compile only. For example:

icc /C+ empty.c

Do not specify the /Ge- option. Specifying /Ge- causes the DLL initialization
and termination code to be included in the object module, and the resource DLL
cannot contain code.

5. Link the resulting object module, using your .DEF file, to create an empty DLL:

ILINK empty.obj mydef.def /OUT:resdll.dll

82 VisualAge C++ Programming Guide

Creating Runtime Library DLLs

6. Compile your .RC file with the Resource Compiler to create a .RES file. For
example:

RC /r myres.rc

7. Use the Resource Compiler again to add the resources to the DLL. For example:

RC myres.res resdll.dll

Your application can use OS/2 APIs to load the resource DLL and access the
resources it contains. Like other DLLs, resource DLLs must be in a directory
specified in your LIBPATH environment variable.

 For more information on resources and the Resource Compiler, see the User's

Guide and Tools Reference.

Creating Your Own Runtime Library DLLs

If you are shipping your application to other users, you must use one of three
methods to make the VisualAge C++ runtime library functions available to the users
of your application:

1. Statically bind every module to the library (.LIB) files.

This method increases the size of your modules and also slows the performance
because the library environment has to be initialized for each module. Having
multiple library environments also makes signal handling, file I/O, and other
operations more complicated.

2. Use the DLLRNAME utility to rename the VisualAge C++ library DLLs.

You can then ship the renamed DLLs with your application. DLLRNAME is
described in the User's Guide.

3. Create your own runtime DLLs.

This method provides one common runtime environment for your entire
application. It also lets you apply changes to the runtime library without
relinking your application, meaning that if the VisualAge C++ DLLs change, you
need only rebuild your own DLL. In addition, you can tailor your runtime DLL
to contain only those functions you use, including your own.

 Chapter 6. Building Dynamic Link Libraries 83

Creating Runtime Library DLLs

To create your own runtime library, follow these steps:

1. Copy and rename the appropriate VisualAge C++ .DEF file for the program you
are creating. For example, for a multithread program, copy CPPOM30.DEF to
myrtdll.def. You must also change the DLL name on the LIBRARY line of the
.DEF file. The .DEF files are installed in the LIB subdirectory under the main
VisualAge C++ installation directory.

2. Remove any functions that you do not use directly or indirectly (through other
functions) from your .DEF file (myrtdll.def), file, including the STUB line. Do
not delete anything with the comment **** next to it; variables and functions
indicated by this comment are used by startup functions and are always required.

3. Create a source file for your DLL, for example, myrtdll.c. If you are creating a
runtime library that contains only VisualAge C++ functions, create an empty
source file. If you are adding your own functions to the library, put the code for
them in this file.

4. Compile and link your DLL files. Use the /Ge- option to create a DLL, and the
appropriate option for the type of DLL you are building (single-thread or
multithread). For example, to create a multithread DLL, use the command:

icc /Ge- /Gm+ myrtdll.c myrtdll.def

5. Use the IMPLIB utility to create an import library for your DLL, as described in
“Using Your DLL” on page 72. For example:

IMPLIB /NOI myrtdlli.lib myrtdll.def

6. Use the ILIB utility to add the object modules that contain the initialization and
termination functions to your import library. These objects are needed by all
executable modules and DLLs. They are contained in CPPOM30O.LIB for
multithread programs and CPPOS30O.LIB for single-thread programs.

 See the User's Guide online documentation for information on how to use
ILIB.

Note: If you do not use the ILIB utility, you must ensure that all objects that
access your runtime DLL are statically linked to the appropriate object library.

84 VisualAge C++ Programming Guide

Creating Runtime Library DLLs

7. Compile your executable modules and other DLLs with the /Gn+ option to
exclude the default library information. For example:

icc /C /Gn+ /Ge+ myprog.c
icc /C /Gn+ /Ge- mydll.c

When you link your objects, specify your own import library. If you are using or
plan to use OS/2 APIs, specify OS2386.LIB also. For example:

ILINK myprog.obj myrtdlli.lib OS2386.LIB
ILINK mydll.obj myrtdlli.lib OS2386.LIB

To compile and link in one step, use the commands:

icc /Gn+ /Ge+ myprog.c myrtdlli.lib OS2386.LIB
icc /Gn+ /Ge- mydll.c myrtdlli.lib OS2386.LIB

Note: If you did not use the ILIB utility to add the initialization and termination
objects to your import library, specify the following when you link your
modules:

a. CPPOS30O.LIB or CPPOM30O.LIB
b. Your import library
c. OS2386.LIB (to allow you to use OS/2 APIs)
d. The linker option /NOD.

For example:

ILINK /NOD myprog.obj CPPOS30O.LIB myrtdlli.lib OS2386.LIB;
ILINK /NOD mydll.obj CPPOS30O.LIB myrtdlli.lib OS2386.LIB;

The /NOD option tells the linker to disregard the default libraries specified
in the object files and use only the libraries given on the command line.
If you are using icc to invoke the linker for you, the commands would
be:

icc /B"/NOD" myprog.c CPPOS30O.LIB myrtdlli.lib OS2386.LIB
icc /Ge- /B"/NOD" mydll.c CPPOS30O.LIB myrtdlli.lib OS2386.LIB

The linker then links the objects from the object library directly into your
executable module or DLL.

 Chapter 6. Building Dynamic Link Libraries 85

Creating Runtime Library DLLs

Example of Creating a Runtime Library

In the sample project SAMPLE03, the program MAIN03.C calls printf and srand from
the VisualAge C++ runtime DLLs, and uses other variables and functions from
SAMPLE03.DLL. Because SAMPLE03.DLL also uses printf and is statically linked to
the runtime libraries, the code for the VisualAge C++ runtime functions it uses is
linked into SAMPLE03.DLL.

If these functions are included in SAMPLE03.DLL, all external references from
MAIN03.C can be resolved by dynamically linking to this DLL. As a result,
MAIN03.EXE will be smaller.

Note: The process described here is only possible when the user DLL links statically
to the VisualAge C++ runtime library.

Rebuild SAMPLE03.DLL to include printf and srand as exports by following these
steps:

1. Add _printfieee and srand to SAMPLE03.DEF under the EXPORTS keyword.

Note: When the language level is /Se, printf is mapped to _printfieee to
support the IEEE extensions (infinity and NaN).

2. Use CPPOS30.DEF to find what functions and variables must be exported, and add
them to SAMPLE03.DEF as EXPORTS.

3. Relink SAMPLE03.DLL as described in “Compiling and Linking Your DLL” on
page 67.

After your changes, SAMPLE03.DEF should look like Figure 8. The example shown in
this figure is actually the file SAMPLE3R.DEF, which is provided with the SAMPLE03
project.

LIBRARY SAMPLE03 INITINSTANCE TERMINSTANCE
PROTMODE
DATA MULTIPLE NONSHARED READWRITE LOADONCALL
CODE LOADONCALL
EXPORTS

nSize ; array size
pArray ; pointer to base of array of ints
nSwaps ; number of swaps required to sort the array

Figure 8 (Part 1 of 2). SAMPLE3R.DEF - Definition File to Export C Runtime Functions

86 VisualAge C++ Programming Guide

Creating Runtime Library DLLs

nCompares ; number of comparisons required to sort the array
list ; array listing function
bubble ; bubble sort function
selection ; selection sort function
insertion ; insertion sort function

; CRT symbols required by EXE
 _printfieee
 srand
 _critlib_except ; ****
 _DosSelToFlat ; ****
 _DosFlatToSel ; ****
 _environ ; ****
 _CRT_init ; ****
 __ctordtorInit ; ****
 _EXE_Exception ; ****
 _Exception ; ****
 _PrintErrMsg ; ****
 _exception_procinit ; ****
 _exception_dllinit ; ****
 _matherr ; ****
 _terminate ; ****
 __ctordtorTerm ; ****
 exit ; ****
 free ; ****
 malloc ; ****
 strdup ; ****
 strpbrk ; ****

Figure 8 (Part 2 of 2). SAMPLE3R.DEF - Definition File to Export C Runtime Functions

Note: In this definition file, the EXPORTS entry for selection is commented out
because selection is exported explicitly in the code with a #pragma export
statement.

Once you have relinked SAMPLE03.DLL, re-create MAIN03.EXE so the calls to the
VisualAge C++ runtime functions are resolved by dynamically linking to
SAMPLE03.DLL. A make file, MAKE03R, is provided to do this for you.

Note: You must have the Toolkit installed to use the make file.

To re-create MAIN03.EXE, at the prompt in the \IBMCPP\SAMPLES\COMPILER\SAMPLE03
directory under the main VisualAge C++ directory, type:

nmake all /f MAKE03R

 Chapter 6. Building Dynamic Link Libraries 87

Creating Runtime Library DLLs

To recompile and relink MAIN03.EXE yourself:

1. Use the IMPLIB utility to create an import library from SAMPLE03.DEF, using the
command:

IMPLIB SAMPLE03.LIB SAMPLE03.DEF

2. Compile and link MAIN03.EXE with the command:

icc /B"/NOE /NOD" MAIN03.C CPPOS30O.LIB SAMPLE03.LIB OS2386.LIB

Note: If you compiled with the option /Gn+, the linker option /NOD is not
required, but you must recompile all the modules with this option.

If MAIN03.OBJ already exists, you can use the following command to create
MAIN.EXE by simply relinking:

ILINK /NOI /NOE /NOD MAIN03 CPPOS30O SAMPLE03 OS2386;

After you have performed these steps, copy SAMPLE03.DLL to a directory listed in the
LIBPATH variable in your CONFIG.SYS file. You can then use the command:

 MAIN03

to run the SAMPLE03 program.

88 VisualAge C++ Programming Guide

Making Your Program International

Part 3. Making Your Program International

This section describes internationalization and provides information on
VisualAge C++ support for internationalization.

Chapter 7. Introduction to Locale . 91
Internationalization in Programming Languages 91
Locales and Localization . 92
Definition of the Default POSIX C Locales . 94
Differences Between SAA C and POSIX C Locales 103
Customizing a Locale . 103
Using Environment Variables to Select a Locale 105
Code Set Conversion Utilities . 107
Code Set Converters Supplied . 108

Chapter 8. Building a Locale . 113
Using the charmap File . 113
Locale Source Files . 120
Using the LOCALDEF Utility . 124

 Copyright IBM Corp. 1992, 1995 89

Making Your Program International

90 VisualAge C++ Programming Guide

Making Your Program International

 7 Introduction to Locale

This chapter introduces the concept of internationalization in programming languages
and the implementation of internationalization by the use of locales. The locale
codesets provided with the VisualAge C++ are listed and the default locale set noted.
Customization of locales and conversion utilities provided with VisualAge C++ are
also discussed.

Internationalization in Programming Languages

Internationalization in programming languages is a concept that comprises

¹ externally stored cultural data,
¹ a set of programming tools to create such cultural data,
¹ a set of programming interfaces to access this data, and
¹ a set of programming methods that enable you to write programs that modify

their behavior according to the user's cultural environment, specified during the
program's execution.

Elements of Internationalization

A locale is a collection of data that encodes information about the cultural
environment. The typical elements of cultural environment are as follows:

Native language

The text that the executing program uses to communicate
with a user or environment, that is, the natural language of
the end user.

Character sets and coded character sets

Maps an alphabet, the characters used in a particular
language, and a collating sequence onto the set of
hexadecimal values (code points) that uniquely identify each
character. This mapping creates the coded character set,
which is uniquely identified by the character set it encodes,
the set of code point values, and the mapping between these
two.

Collating and ordering

The relative ordering of characters used for sorting.

 Copyright IBM Corp. 1992, 1995 91

Making Your Program International

Character classification

Determines the type of character (alphabetic, numeric, and so
forth) represented by a code point.

Character case conversion

Defines the mapping between uppercase and lowercase
characters within a single character set.

Date and time format

Defines the way date and time data (names of weekdays and
months; order of month, day, and year, and so forth) are
formatted.

Format of numeric and non-numeric numbers

Define the way numbers and monetary units are formatted
with commas, decimal points, and so forth.

Note: The VisualAge C++ compiler and library support of internationalization is
based on the IEEE POSIX P1003.2 and X/Open Portability Guide standards
for global locales and coded character set conversion, with the following
exceptions:

¹ The grouping arguments in the LC_NUMERIC and LC_MONETARY categories
must be strings, not sets of integers.

¹ The use of the ellipsis (...) in the LC_COLLATE category is limited.

For more information about the LC_NUMERIC, LC_MONETARY, and the LC_COLLATE
categories, see Appendix C, “Locale Categories” on page 359.

Locales and Localization

Localization is an action that establishes the cultural environment for an application
by selecting the active locale. Only one locale can be active at one time, but a
program can change the active locale at any time during its execution. The active
locale affects the behavior on the locale-sensitive interfaces for the entire program.
This is called the global locale model.

 Locale-Sensitive Interfaces

The VisualAge C++ library products provide many interfaces to manipulate and
access locales. You can use these interfaces to write internationalized C programs.
The C locale support will also work for C++ programs.

This list summarizes all the VisualAge C++ library functions which affect or are
affected by the current locale.

92 VisualAge C++ Programming Guide

Making Your Program International

Selecting locale

Changing the characteristics of the user's cultural environment by
changing the current locale: setlocale

Querying locale

Retrieving the locale information that characterizes the user's cultural
environment:

Monetary and numeric formatting conventions:

localeconv

Date and time formatting conventions:

localdtconv

User-specified information:

nl_langinfo

Encoding of the variant part of the portable character set:

getsyntx

Character set identifier:

csid, wcsid

Classification of characters:

Single-byte characters:

isalnum, isalpha, isblank, iscntrl, isdigit, isgraph,
islower, isprint, ispunct, isspace, isupper, isxdigit

Wide characters:

iswalnum, iswalpha, iswblank, iswcntrl, iswdigit,
iswgraph, iswlower, iswprint, iswpunct, iswspace,
iswupper, iswxdigit, wctype, iswctype

Character case mapping:

Single-byte characters:

tolower, toupper

Wide characters:

towlower, towupper

Multibyte character and multibyte string conversion:

mblen, mbrlen, mbtowc, mbrtowc, wctomb, wcrtomb, mbstowcs,
mbsrtowcs, wcstombs, wcsrtombs, mbsinit, wctob

String conversions to arithmetic:

strtod, wcstod, strtol, wcstol, strtoul, wcstoul, atof, atoi, atol

String collating:

strcoll, strxfrm, wcscoll, wcsxfrm

 Chapter 7. Introduction to Locale 93

Making Your Program International

Character display width:

wcswidth, wcwidth

Date, time, and monetary formatting:

strftime, strptime, wcsftime, mktime, ctime, gmtime, localtime,
strfmon

Formatted input/output:

printf (and family of functions), scanf (and family of functions),
vswprintf, swprintf, swscanf

Processing regular expressions:

regcomp, regexec

Wide character unformatted input/output:

fgetwc, fgetws, fputwc, fputws, getwc, getwchar, putwc, putwchar,
ungetwc

Wide character string handling functions:

wcscat, wcsncat, wcscmp, wcsncmp, wcscpy, wcsncpy, wcschr, wcscspn,
wcspbrk, wcsspn, wcsstok, wcsrchr, wcslenl.

Response matching:

rpmatch

Collating elements:

ismccollel, strtocoll, colltostr, collequiv, collrange,
collorder, cclass, maxcoll, getmccoll, getwmccoll

Definition of the Default POSIX C Locales

The default POSIX C locale is prebuilt into the runtime library.

The POSIX C locale is defined as though it was built with a charmap file with a
MB_CUR_MAX value of 2. The processing of multibyte characters is dependent on the
current process codepage. The codeset name for the nl_langinfo and getsyntx
functions is IBM-850.

The following is true of the POSIX C locale:

1. It is the default locale.

2. Issuing setlocale(category, "") has the following effect:

¹ Locale-related environment variables are checked to determine which locales
to use to set the category specified.

¹ If no non-null environment variable is present, then it is the equivalent of
having issued setlocale(category, "C"). That is, the locale chosen is the

94 VisualAge C++ Programming Guide

Making Your Program International

C locale defintion, and querying the locale with setlocale(category,
NULL) returns "C" as the locale name.

The POSIX definition of the C locale is described below, with the IBM extensions
LC_SYNTAX and LC_TOD showing their default values.

#############
LC_CTYPE
#############
"alpha" is by default "upper" and "lower"
"alnum" is by definition "alpha" and "digit"
"print" is by default "alnum", "punct" and <space> character
"punct" is by default "alnum" and "punct"

upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\
 <N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>

lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\
 <n>;<o>;<p>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<x>;<y>;<z>

digit <zero>;<one>;<two>;<three>;<four>;\
 <five>;<six>;<seven>;<eight>;<nine>

space <tab>;<newline>;<vertical-tab>;<form-feed>;\
 <carriage-return>;<space>

cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\
 <form-feed>;<carriage-return>;\
 <NUL>;<SOH>;<STX>;<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;\
 <SI>;<DLE>;<DC1>;<DC2>;<DC3>;<DC4>;<NAK>;<SYN>;\
 <ETB>;<CAN>;;<SUB>;<ESC>;<IS4>;<IS3>;<IS2>;\
 <IS1>;

punct <exclamation-mark>;<quotation-mark>;<number-sign>;\
 <dollar-sign>;<percent-sign>;<ampersand>;<apostrophe>;\
 <left-parenthesis>;<right-parenthesis>;<asterisk>;\
 <plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
 <colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
 <greater-than-sign>;<question-mark>;<commercial-at>;\
 <left-square-bracket>;<backslash>;<right-square-bracket>;\
 <circumflex>;<underscore>;<grave-accent>;\
 <left-curly-bracket>;<vertical-line>;<right-curly-bracket>;<tilde>

xdigit <zero>;<one>;<two>;<three>;<four>;\
 <five>;<six>;<seven>;<eight>;<nine>;\
 <A>;;<C>;<D>;<E>;<F>;\
 <a>;;<c>;<d>;<e>;<f>

 Chapter 7. Introduction to Locale 95

Making Your Program International

blank <space>;\
 <tab>

toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\
 (<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
 (<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\
 (<p>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
 (<u>,<U>);(<v>,<V>);(<w>,<W>);(<x>,<X>);(<y>,<Y>);\
 (<z>,<Z>)

tolower (<A>,<a>);(,);(<C>,<c>);(<D>,<d>);(<E>,<e>);\
 (<F>,<f>);(<G>,<g>);(<H>,<h>);(<I>,<i>);(<J>,<j>);\
 (<K>,<k>);(<L>,<l>);(<M>,<m>);(<N>,<n>);(<O>,<o>);\
 (<P>,<p>);(<Q>,<q>);(<R>,<r>);(<S>,<s>);(<T>,<t>);\
 (<U>,<u>);(<V>,<v>);(<W>,<w>);(<X>,<x>);(<Y>,<y>);\
 (<Z>,<z>)

END LC_CTYPE

#############
LC_COLLATE
#############

order_start
ASCII Control characters
<NUL>
<SOH>
<STX>
<ETX>
<EOT>
<ENQ>
<ACK>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<SO>
<SI>
<DLE>
<DC1>
<DC2>
<DC3>
<DC4>

96 VisualAge C++ Programming Guide

Making Your Program International

<NAK>
<SYN>
<ETB>
<CAN>

<SUB>
<ESC>
<IS4>
<IS3>
<IS2>
<IS1>
<space>
<exclamation-mark>
<quotation-mark>
<number-sign>
<dollar-sign>
<percent-sign>
<ampersand>
<apostrophe>
<left-parenthesis>
<right-parenthesis>
<asterisk>
<plus-sign>
<comma>
<hyphen>
<period>
<slash>
<zero>
<one>
<two>
<three>
<four>
<five>
<six>
<seven>
<eight>
<nine>
<colon>
<semicolon>
<less-than-sign>
<equals-sign>
<greater-than-sign>
<question-mark>

 Chapter 7. Introduction to Locale 97

Making Your Program International

<commercial-at>
<A>

<C>
<D>
<E>
<F>
<G>
<H>
<I>
<J>
<K>
<L>
<M>
<N>
<O>
<P>
<Q>
<R>
<S>
<T>
<U>
<V>
<W>
<X>
<Y>
<Z>
<left-square-bracket>
<backslash>
<right-square-bracket>
<circumflex>
<underscore>
<grave-accent>
<a>

<c>
<d>
<e>
<f>
<g>
<h>
<i>
<j>

98 VisualAge C++ Programming Guide

Making Your Program International

<k>
<l>
<m>
<n>
<o>
<p>
<q>
<r>
<s>
<t>
<u>
<v>
<w>
<x>
<y>
<z>
<left-curly-bracket>
<vertical-line>
<right-curly-bracket>
<tilde>

order_end

END LC_COLLATE

 Chapter 7. Introduction to Locale 99

Making Your Program International

#############
LC_MONETARY
#############

int_curr_symbol ""
currency_symbol ""
mon_decimal_point ""
mon_thousands_sep ""
mon_grouping ""
positive_sign ""
negative_sign ""
int_frac_digits -1
frac_digits -1
p_cs_precedes -1
p_sep_by_space -1
n_cs_precedes -1
n_sep_by_space -1
p_sign_posn -1
n_sign_posn -1

END LC_MONETARY

#############
LC_NUMERIC
#############

decimal_point "<period>"
thousands_sep ""
grouping ""

END LC_NUMERIC

#############
LC_TIME
#############

abday "<S><u><n>";\
 "<M><o><n>";\
 "<T><u><e>";\
 "<W><e><d>";\
 "<T><h><u>";\
 "<F><r><i>";\
 "<S><a><t>"

100 VisualAge C++ Programming Guide

Making Your Program International

day "<S><u><n><d><a><y>";\
 "<M><o><n><d><a><y>";\
 "<T><u><e><s><d><a><y>";\
 "<W><e><d><n><e><s><d><a><y>";\
 "<T><h><u><r><s><d><a><y>";\
 "<F><r><i><d><a><y>";\
 "<S><a><t><u><r><d><a><y>"

abmon "<J><a><n>";\
 "<F><e>";\
 "<M><a><r>";\
 "<A><p><r>";\
 "<M><a><y>";\
 "<J><u><n>";\
 "<J><u><l>";\
 "<A><u><g>";\
 "<S><e><p>";\
 "<O><c><t>";\
 "<N><o><v>";\
 "<D><e><c>"

mon "<J><a><n><u><a><r><y>";\
 "<F><e><r><u><a><r><y>";\
 "<M><a><r><c><h>";\
 "<A><p><r><i><l>";\
 "<M><a><y>";\
 "<J><u><n><e>";\
 "<J><u><l><y>";\
 "<A><u><g><u><s><t>";\
 "<S><e><p><t><e><m><e><r>";\
 "<O><c><t><o><e><r>";\
 "<N><o><v><e><m><e><r>";\
 "<D><e><c><e><m><e><r>"

equivalent of AM/PM (%p)
am_pm "<A><M>";"<P><M>"

appropriate date and time representation (%c) "%a %b %e %H:%M:%S %Y"
d_t_fmt "<percent-sign><a><space><percent-sign><space><percent-sign><e>\
<space><percent-sign><H><colon><percent-sign><M>\
<colon><percent-sign><S><space><percent-sign><Y>"

appropriate date representation (%x) "%m/%d/%y"
d_fmt "<percent-sign><m><slash><percent-sign><d><slash><percent-sign><y>"

appropriate time representation (%X) "%H:%M:%S"
t_fmt "<percent-sign><M><colon><percent-sign><M><colon><percent-sign><S>"

 Chapter 7. Introduction to Locale 101

Making Your Program International

appropriate 12-hour time representation (%r) "%I:%M:%S %p"
t_fmt_ampm "<percent-sign><I><colon><percent-sign><M><colon><percent-sign><S>\
<space><percent-sign><p>"

END LC_TIME

#############
LC_MESSAGES
#############

yesexpr "<circumflex><left-square-bracket><y><Y><right-square-bracket>"
noexpr "<circumflex><left-square-bracket><n><N><right-square-bracket>"

END LC_MESSAGES

LC_syntax and LC_TOD are IBM-extensions to the POSIX C locale definition, their
default values are shown here.

#############
LC_SYNTAX
#############

backslash "<backslash>"
right_brace "<right-brace>"
left_brace "<left-brace>"
right_bracket "<right-square-bracket>"
left_bracket "<left-square-bracket>"
circumflex "<circumflex>"
tilde "<tilde>"
exclamation_mark "<exclamation-mark>"
number_sign "<number-sign>"
vertical_line "<vertical-line>"
dollar_sign "<dollar-sign>"
commercial_at "<commercial-at>"
grave_accent "<grave-accent>"

END LC-SYNTAX

102 VisualAge C++ Programming Guide

Making Your Program International

#############
LC_TOD
#############

timezone_difference 0
timezone_name ""
daylight_name ""
start_month 0
end_month 0
start_week 0
end_week 0
start_day 0
end_day 0
start_time 0
end_time 0
shift 0

END LC_TOD

Differences Between SAA C and POSIX C Locales

The incompatibilities between the POSIX C locale of the current VisualAge C++
(Version 3) and the SAA C locale available with previous versions of VisualAge C++
are as follows:

LC_TIME category

date/time format

The date/time format in the previous C locale is "%y/%m/%d %I:%M:%S". In
the POSIX locale, it is "%a %b %d %H %M %S %Y".

time format

The time format in the previous C locale is "%I:%M:%S". In the POSIX locale,
it is "%H:%M:%S".

am/pm strings

The am/pm strings in the previous C locale are "am" and "pm". In the POSIX
locale, they are "AM" and "PM".

Customizing a Locale

This section describes how you can create your own locales, based on the locale
definition files supplied by IBM. The information in this chapter applies to the format
of locales based on the LOCALDEF utility.

In this example you will build a locale named TEXAN using the charmap file
representing the IBM-437 encoded character set. The locale is derived from the

 Chapter 7. Introduction to Locale 103

Making Your Program International

locale representing the English language and the cultural conventions of the United
States.

1. Determine the source of the locale you are going to use. In this case, it is the
locale for the English language in the United States, the source for which is
EN_US\IBM-437.LOC.

2. Copy the selected file (EN_US\IBM-437.LOC) from the source directory to your
own directory and rename it. For example, assuming you are in the C Set ++
locale directory,

c:\ibmcpp\locale

you would type the following:

copy EN_US\IBM-437.LOC c:\ibmcpp\locale\fred\TEXAN.LOC

3. In your new file, change the locale variables to the desired values. For example,
change

d_t_fmt "%a %b %e %H:%M:%S %Z %Y

to

d_t_fmt "Howdy Pardner %a %b %e %H:%M:%S %Z %Y"

4. Generate a new locale load module using the LOCALDEF utility, then place the
produced module in the directory where your locale load modules are located.
Of course, this directory must be specified in the LOCPATH variable.

localdef /f ibm-437.cm /i texan.loc texan.lcl

 See the User's Guide for detailed information about the syntax of the
LOCALDEF utility.

Using the Customized Locale

The customized locale is now ready to be used in calls made by the setlocale
function in VisualAge C++ application code, such as:

setlocale(LC_ALL, "texan");

Referring Explicitly to a Customized Locale

Here is a program with an explicit reference to the TEXAN locale.

104 VisualAge C++ Programming Guide

Making Your Program International

/* this example shows how to get the local time formatted by the */
/* current locale */

#include <stdio.h>
#include <time.h>
#include <locale.h>

int main(void){
 char dest[80];
 int ch;
 time_t temp;

struct tm *timeptr;
temp = time(NULL);
timeptr = localtime(&temp);
/* Fetch default locale name */
printf("Default locale is %s\n",setlocale(LC_ALL,"C"));
ch = strftime(dest,sizeof(dest)-1,
"Local C datetime is %c", timeptr);

 printf("%s\n", dest);

/* Set new Texan locale name */
printf("New locale is %s\n", setlocale(LC_ALL,"Texan"));
ch = strftime(dest,sizeof(dest)-1,
"Texan datetime is %c ", timeptr);

 printf("%s\n", dest);

 return(0);
}

Figure 9. Referring Explicitly to a Customized Locale

Compile and run the above program. The output should be similar to:

Default locale is "C"
Local C datetime is Fri Aug 20 14:58:12 1993
New locale is TEXAN
Texan datetime is Howdy Pardner Fri Aug 20 14:58:12 1993

Using Environment Variables to Select a Locale

You can use environment variables to specify the names of locale categories. You
must call setlocale regardless of environmental variable settings. However, if you
call setlocale. without specifying the locale argument, the locale is changed
according to environmental variables.

 Here is an example:

 Chapter 7. Introduction to Locale 105

Making Your Program International

#include <locale.h>
#include <stdio.h>

int main(void){
 setlocale(LC_ALL,""));
printf("default -"-" locale = %s-n", setlocale(LC_ALL,"NULL"));

 _putenv("LC_ALL=TEXAN");
 setlocale(LC_ALL,""));
printf("Default -"-" locale = %s-n", setlocale(LC_ALL,"NULL"));

 return(0);

}

Figure 10. Using Environment Variables to Select a Locale

If you run the program above, you can expect the following result:

Default "" locale = C
Default "" locale = TEXAN

Note: Specifying NULL as a locale name in a setlocale call means ‘query current
locale’

In the example above, the default NULL locale returns C because the value of
LC_ALL does not affect the current locale until the next setlocale(LC_ALL,"") is
done. When this call is made, the LC_ALL environment variable will be used and the
locale will be set to TEXAN.

For more information about setting environment variables, see Chapter 1, “Setting
Runtime Environment Variables” on page 3.

The names of the environment variables match the names of the locale categories:

 ¹ LC_ALL
 ¹ LC_COLLATE
 ¹ LC_CTYPE
 ¹ LANG
 ¹ LC_MESSAGES
 ¹ LC_MONETARY
 ¹ LC_NUMERIC
 ¹ LC_TIME
 ¹ LC_TOD
 ¹ LC_SYNTAX

106 VisualAge C++ Programming Guide

Making Your Program International

 See the C Library Reference for information about setlocale.

Code Set Conversion Utilities

This section describes the code set conversion utilities supported by the
VisualAge C++ compiler. These utilities are as follows:

ICONV utility

Converts a file from one code set encoding to another.

iconv functions

Perform code set translation. These functions are iconv_open, iconv, and
iconv_close. They are used by the ICONV utility and may be called from
any VisualAge C++ program requiring code set translation.

GENXLT utility

Generates a translation table for use by the ICONV utility and iconv functions.

 See the User's Guide for descriptions of the GENXLT and ICONV utilities, and
the C Library Reference for descriptions of the iconv functions.

The GENXLT Utility

The GENXLT utility reads a source translation file from a specified input file and
writes the compiled version to a specified output file. If you do not specify an input
file or you do not specify an output file, GENXLT uses standard input (stdin) and
standard output (stdout), respectively. The source translation file contains directives
that are acted upon by the GENXLT utility to produce the compiled version of the
translation table.

 For more information on the GENXLT tool, see the User's Guide.

The ICONV Utility

The ICONV utility reads characters from the input file, converts them from one coded
character set definition to another, and writes them to the output file.

 For more information on the ICONV utility, see the User's Guide.

Code Conversion Functions

The iconv_open, iconv, and iconv_close library functions can be called from C
language source to initialize and perform the characters conversions from one
character set encoding to another.

 For more information on these functions, see the C Library Reference.

 Chapter 7. Introduction to Locale 107

Making Your Program International

Code Set Converters Supplied

The code set converters that are provided with VisualAge C++ are as follows:

¹ Code set converters between the Latin-1 and non-Latin-1 code pages and code
page IBM-850.

¹ Code set converters to convert to and from IBM-850, IBM-1047, and ISO8859-1.

¹ Code set converters to convert between ISO8859-7 and ISO8859-9 and the
applicable ASCII code page.

¹ Code set converters between the Japanese code pages.

The code set converters are provided either as tables built by the GENXLT utility or
as functions inside IBMCCONV.DLL. The input source to the GENXLT utility is also
provided.

The code set converters use the "Enforced subset match" method for characters that
are in the input code set but are not in the output code set. All characters not in the
output code set are replaced by the SUB character, which is 0x3F in EBCDIC and 0x1A
in ASCII.

108 VisualAge C++ Programming Guide

Making Your Program International

The following table lists the code set converters supplied with VisualAge C++:

FromCode ToCode Function/Pathname

EBCDIC Codesets to ASCII Codesets

IBM-037 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-037\IBM-850.XLT

IBM-273 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-273\IBM-850.XLT

IBM-274 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-274\IBM-850.XLT

IBM-275 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-274\IBM-850.XLT

IBM-277 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-277\IBM-850.XLT

IBM-278 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-278\IBM-850.XLT

IBM-280 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-280\IBM-850.XLT

IBM-281 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-281\IBM-850.XLT

IBM-282 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-282\IBM-850.XLT

IBM-284 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-284\IBM-850.XLT

IBM-285 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-285\IBM-850.XLT

IBM-297 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-297\IBM-850.XLT

IBM-500 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-500\IBM-850.XLT

IBM-871 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-871\IBM-850.XLT

IBM-875 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-875\IBM-850.XLT

IBM-930 IBM-932 IBM-930_IBM-932

IBM-939 IBM-932 IBM-939_IBM-932

IBM-1026 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-1026\IBM-850.XLT

IBM-1047 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-1047\IBM-850.XLT

 Chapter 7. Introduction to Locale 109

Making Your Program International

FromCode ToCode Function/Pathname

ASCII Codesets to EBCDIC Codesets

IBM-850 IBM-037 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-037.XLT

IBM-850 IBM-273 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-273.XLT

IBM-850 IBM-274 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-274.XLT

IBM-850 IBM-275 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-275.XLT

IBM-850 IBM-277 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-277.XLT

IBM-850 IBM-278 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-278.XLT

IBM-850 IBM-280 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-280.XLT

IBM-850 IBM-281 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-281.XLT

IBM-850 IBM-282 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-282.XLT

IBM-850 IBM-284 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-284.XLT

IBM-850 IBM-285 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-285.XLT

IBM-850 IBM-297 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-297.XLT

IBM-850 IBM-500 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-500.XLT

IBM-850 IBM-871 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-871.XLT

IBM-850 IBM-875 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-875.XLT

IBM-850 IBM-1026 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-1026.XLT

IBM-932 IBM-930 IBM-932_IBM-930

IBM-932 IBM-939 IBM-932_IBM-939

110 VisualAge C++ Programming Guide

Making Your Program International

FromCode ToCode Function/Pathname

ASCII Codesets to ASCII Codesets

IBM-437 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-437\IBM-850.XLT

IBM-852 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-852\IBM-850.XLT

IBM-857 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-857\IBM-850.XLT

IBM-860 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-860\IBM-850.XLT

IBM-861 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-861\IBM-850.XLT

IBM-863 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-863\IBM-850.XLT

IBM-865 IBM-850 \IBMC\LOCALE\ICONVTAB\IBM-865\IBM-850.XLT

IBM-850 IBM-437 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-437.XLT

IBM-850 IBM-852 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-852.XLT

IBM-850 IBM-857 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-857.XLT

IBM-850 IBM-860 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-860.XLT

IBM-850 IBM-861 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-861.XLT

IBM-850 IBM-863 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-863.XLT

IBM-850 IBM-865 \IBMC\LOCALE\ICONVTAB\IBM-850\IBM-865.XLT

EBCDIC Codesets to EUCJP Codeset

IBM-eucJP IBM-930 IBM-eucJP_IBM-930

IBM-eucJP IBM-939 IBM-eucJP_IBM-939

IBM-930 IBM-eucJP IBM-930_IBM-eucJP

IBM-939 IBM-eucJP IBM-939_IBM-eucJP

ISO Codesets to ASCII Codesets

ISO8859-1 IBM-850 \IBMC\LOCALE\ICONVTAB\ISO88591\IBM-850.XLT

ISO8859-9 IBM-857 \IBMC\LOCALE\ICONVTAB\ISO88599\IBM-857.XLT

IBM-850 ISO8859-1 \IBMC\LOCALE\ICONVTAB\IBM-850\ISO88591.XLT

IBM-857 ISO8859-9 \IBMC\LOCALE\ICONVTAB\IBM-857\ISO88599.XLT

 Chapter 7. Introduction to Locale 111

Making Your Program International

The following code set converters are also supplied. These converters are used by the
code set converters between the codesets IBM-930, IBM-932, IBM-939, and
IBM-eucJP.

FromCode ToCode Function/Pathname

IBM-290 IBM-932 \IBMC\LOCALE\ICONVTAB\IBM-290\IBM-932.XLT

IBM-290 IBM-eucJP IBM-290_IBM-eucJP

IBM-300 IBM-932 IBM-300_IBM-932

IBM-300 IBM-eucJP IBM-300_IBM-eucJP

IBM-932 IBM-290 \IBMC\LOCALE\ICONVTAB\IBM-932\IBM-290.XLT

IBM-932 IBM-300 IBM-932_IBM-300

IBM-932 IBM-1027 \IBMC\LOCALE\ICONVTAB\IBM-932\IBM-1027.XLT

IBM-1027 IBM-932 \IBMC\LOCALE\ICONVTAB\IBM-1027\IBM-932.XLT

IBM-1027 IBM-eucJP IBM-1027_IBM-eucJP

IBM-eucJP IBM-290 IBM-eucJP_IBM-290

IBM-eucJP IBM-300 IBM-eucJP_IBM-300

IBM-eucJP IBM-1027 IBM-eucJP_IBM-1027

112 VisualAge C++ Programming Guide

Building a Locale

 8 Building a Locale

Cultural information is encoded in the locale source file using the locale definition
language. One locale source file characterizes one cultural environment.

The locale source file is processed by the locale compilation tool, called the
LOCALDEF tool. See the User's Guide for information on using this tool.

To enhance portability of the locale source files, certain information related to the
character sets can be encoded using the symbolic names of characters. The mapping
between the symbolic names and the characters they represent and its associated
hexadecimal value is defined in the character set description file or charmap file.

The conceptual model of the locale build process is presented below:

 cultural ┌───────────────┐ ┌─────────┐ coded
 environment │ locale source │ │ charmap │ character set
 definition └───────┬───────┘ └────┬────┘ definition
 │ │
 │ │
 └────────────┬───────────┘
 │
 6
 ┌────────────────┐

│ LOCALEDEF tool │
 └───────┬────────┘
 │
 6
 ┌─────────────────┐ compiled object

│ Compiled locale │◄───────► used by the
 └─────────────────┘ VisualAge C++
 interfaces

Using the charmap File

The charmap file defines a mapping between the symbolic names of characters and
the hexadecimal values associated with the character in a given coded character set.
Optionally, it can provide the alternate symbolic names for characters. Characters in
the locale source file can be referred to by their symbolic names or alternate symbolic
names, thereby allowing for writing generic locale source files independent of the
encoding of the character set they represent.

Each charmap file must contain at least the definition of the portable character set
and the character symbolic names associated with each character. The characters in

 Copyright IBM Corp. 1992, 1995 113

Building a Locale

the portable character set and the corresponding symbolic names, and optional
alternate symbolic names, are defined in Figure 11 on page 114.

Figure 11 (Page 1 of 4). Characters in portable character set and corresponding symbolic names

Symbolic Name Alternate

Name

Character

<NUL>

<tab> <SE10>

<vertical-tab> <SE12>

<form-feed> <SE13>

<carriage-return> <SE14>

<newline> <SE11>

<backspace> <SE09>

<alert> <SE08>

<space> <SP01>

<period> <SP11> .

<less-than-sign> <SA03> <

<left-parenthesis> <SP06> (

<plus-sign> <SA01> +

<ampersand> <SM03> &

<right-parenthesis> <SP07>)

<semicolon> <SP14> ;

<hyphen> <SP10> -

<hyphen-minus> <SP10> -

<slash> <SP12> /

<solidus> <SP12> /

<comma> <SP08> ,

<percent-sign> <SM02> %

<underscore> <SP09> _

<low-line> <SP09> _

<greater-than-sign> <SA05> >

<question-mark> <SP15> ?

<colon> <SP13> :

114 VisualAge C++ Programming Guide

Building a Locale

Figure 11 (Page 2 of 4). Characters in portable character set and corresponding symbolic names

Symbolic Name Alternate

Name

Character

<apostrophe> <SP05> '

<equals-sign> <SA04> =

<quotation-mark> <SP04> "

<a> <LA01> a

 <LB01> b

<c> <LC01> c

<d> <LD01> d

<e> <LE01> e

<f> <LF01> f

<g> <LG01> g

<h> <LH01> h

<i> <LI01> i

<j> <LJ01> j

<k> <LK01> k

<l> <LL01> l

<m> <LM01> m

<n> <LN01> n

<o> <LO01> o

<p> <LP01> p

<q> <LQ01> q

<r> <LR01> r

<s> <LS01> s

<t> <LT01> t

<u> <LU01> u

<v> <LU01> v

<w> <LW01> w

<x> <LX01> x

<y> <LY01> y

<z> <LZ01> z

 Chapter 8. Building a Locale 115

Building a Locale

Figure 11 (Page 3 of 4). Characters in portable character set and corresponding symbolic names

Symbolic Name Alternate

Name

Character

<A> <LA02> A

 <LB02> B

<C> <LC02> C

<D> <LD02> D

<E> <LE02> E

<F> <LF02> F

<G> <LG02> G

<H> <LH02> H

<I> <LI02> I

<J> <LJ02> J

<K> <LK02> K

<L> <LL02> L

<M> <SM02> M

<N> <LN02> N

<O> <LO02> O

<P> <LP02> P

<Q> <LQ02> Q

<R> <LR02> R

<S> <LS02> S

<T> <LT02> T

<U> <LU02> U

<V> <LV02> V

<W> <LW02> W

<X> <LX02> X

<Y> <LY02> Y

<Z> <LZ02> Z

<zero> <ND10> 0

<one> <ND01> 1

<two> <ND02> 2

116 VisualAge C++ Programming Guide

Building a Locale

The portable character set is the basis for the syntactic and semantic processing of the
LOCALDEF tool, and for most of the utilities and functions that access the locale
object files. Therefore the portable character set must always be defined.

The charmap file is divided into two main sections:

1. the character symbolic name to hexidecimal mapping section, or CHARMAP

Figure 11 (Page 4 of 4). Characters in portable character set and corresponding symbolic names

Symbolic Name Alternate

Name

Character

<three> <ND03> 3

<four> <ND04> 4

<five> <ND05> 5

<six> <ND06> 6

<seven> <ND07> 7

<eight> <ND08> 8

<nine> <ND09> 9

<vertical-line> <SM13> |

<exclamation-mark> <SP02> !

<dollar-sign> <SC03> $

<circumflex> <SD15> ‸

<circumflex-accent> <SD15> ‸

<grave-accent> <SD13> `

<number-sign> <SM01> #

<commercial-at> <SM05> @

<tilde> <SD19> ˜

<left-square-bracket> <SM06> [

<right-square-bracket> <SM08>]

<left-brace> <SM11> {

<left-curly-bracket> <SM11> {

<right-brace> <SM14> }

<right-curly-bracket> <SM14> }

<backslash> <SM07> \

<reverse-solidus> <SM07> \

 Chapter 8. Building a Locale 117

Building a Locale

2. the character symbolic name to character set identifier section, or CHARSETID

The following definitions can precede the two sections listed above. Each consists of
the symbol shown in the following list, starting in column 1, including the
surrounding brackets, followed by one or more <blank>s, followed by the value to be
assigned to the symbol.

<code_set_name>
The string literal containing the name of the coded character set name

<mb_cur_max>
the maximum number of bytes in a multibyte character which can be set
to a value of either 1 or 2. If it is 1, each character in the character set
defined in this charmap is encoded by a one-byte value. If it is 2, each
character in the character set defined in this charmap is encoded by a
one- or two-byte value. If it is not specified, the default value of 1 is
assumed. If a value of other than 1 or 2, is specified, a warning message
is issued and the default value of 1 is assumed.

<mb_cur_min>
The minimum number of bytes in a multibyte character. Can be set to 1
only. If a value of other than 1 is specified, a warning message is issued
and the default value of 1 is assumed.

<escape_char>
Specifies the escape character that is used to specify hexadecimal or octal
notation for numeric values. It defaults to the hexadecimal value 0x5C,
which represents the \ character in the coded character set IBM-850.

<comment_char>
Denotes the character chosen to indicate a comment within a charmap
file. It defaults to the hexadecimal value 0x23, which represents the #
character in the coded character set IBM-850.

The CHARMAP Section

The CHARMAP section defines the values for the symbolic names representing
characters in the coded character set. Each charmap file must define at least the
portable character set. The character symbolic names or alternate symbolic names (or
both) must be be used to define the portable character set. These are shown in
Figure 11 on page 114.

Additional characters can be defined by the user with symbolic character names.

The CHARMAP section starts with the line containing the keyword CHARMAP, and ends
with the line containing the keywords END CHARMAP. CHARMAP and END CHARMAP
must both start in column one.

118 VisualAge C++ Programming Guide

Building a Locale

The character set mapping definitions are all the lines between the first and last lines
of the CHARMAP section.

The formats of the character set mappings for this section are as follows:

"%s %s %s\n", <symbolic-name>, <encoding>, <comments>
"%s...%s %s %s\n", <symbolic-name>, <symbolic-name>, <encoding>, <comments>

The first format defines a single symbolic name and a corresponding encoding. A
symbolic name is one or more characters with visible glyphs, enclosed between angle
brackets.

A character following an escape character is interpreted as itself; for example, the
sequence <\\\>> represents the symbolic name \> enclosed within angle brackets,
where the backslash (\) is the escape character.

The second format defines a group of symbolic names associated with a range of
values. The two symbolic names are comprised of two parts, a prefix and suffix.
The prefix consists of zero or more non-numeric invariant visible glyph characters
and is the same for both symbolic names. The suffix consists of a positive decimal
integer. The suffix of the first symbolic name must be less than or equal to the suffix
of the second symbolic name. As an example, <j0101>...<j0104> is interpreted as
the symbolic names <j0101>,<j0102>,<j0103>,<j0104>. The common prefix is
'j' and the suffixes are '0101' and '0104'.

The encoding part can be written in one of two forms:

<escape-char><number> (single byte value)
 <escape-char><number><escape-char><number> (double byte value)

The number can be written using octal, decimal, or hexadecimal notation. Decimal
numbers are written as a 'd' followed by 2 or 3 decimal digits. Hexadecimal
numbers are written as an 'x' followed by 2 hexadecimal digits. An octal number is
written with 2 or 3 octal digits. As an example, the single byte value x1F could be
written as '\37', '\x1F', or '\d31'. The double byte value of x1A1F could be
written as '\32\37', '\x1A\x1F', or '\d26\d31'.

In lines defining ranges of symbolic names, the encoded value is the value for the
first symbolic name in the range (the symbolic name preceding the ellipsis).
Subsequent names defined by the range have encoding values in increasing order.

When constants are concatenated for multibyte character values, they must be of the
same type, and are interpreted in byte order from first to last with the least significant
byte of the multibyte character specified by the last constant. For example, the
following line:

 <j0101>...<j0104> \d129\d254

 Chapter 8. Building a Locale 119

Building a Locale

would be interpreted as follows:

 <j0101> \d129\d254
 <j0102> \d129\d255
 <j0103> \d130\d0
 <j0104> \d130\d1

The CHARSETID Section

The character set identifier section of the charmap file maps the symbolic names
defined in the CHARMAP section to a character set identifier.

Note: The two functions csid and wcsid query the locales and return the character
set identifier for a given character. This information is not currently used by
any other library function.

The CHARSETID section starts with a line containing the keyword CHARSETID, and
ends with the line containing the keywords END CHARSETID. Both CHARSETID and
END CHARSETID must begin in column 1. The lines between the first and last lines of
the CHARSETID section define the character set identifier for the defined coded
character set.

The character set identifier mappings are defined as follows:

"%s %c", <symbolic-name>, <value>
"%c %c", <value>, <value>
"%s...%s %c", <symbolic-name>, <symbolic-name>, <value>
"%c...%c %c", <value>, <value>, <value>
"%s...%c %c", <symbolic-name>, <value>, <value>
"%c...%s %c", <value>, <symbolic-name>, <value>

The individual characters are specified by the symbolic name or the value. The group
of characters are specified by two symbolic names or by two numeric values (or
combination) separated by an ellipsis (...). The interpretation of ranges of values is
the same as specified in the CHARMAP section. The character set identifier is specified
by a numeric value.

Locale Source Files

Locales are defined through the specification of a locale definition file. The locale
definition contains one or more distinct locale category source definitions and not
more than one definition of any category. Each category controls specific aspects of
the cultural environment. A category source definition is either the explicit definition
of a category or the copy directive, which indicates that the category definition should
be copied from another locale definition file.

120 VisualAge C++ Programming Guide

Building a Locale

The definition file is composed of an optional definition section for the escape and
comment characters to be used, followed by the category source definitions.
Comment lines and blank lines can appear anywhere in the locale definition file. If
the escape and comment characters are not defined, default code points are used (x5C
for the escape character and x23 for the comment character, respectively). The
definition section consists of the following optional lines:

escape_char <character>
comment_char <character>

where <character> in both cases is a single-byte character to be used, for example:

escape_char /

defines the escape character in this file to be '/' (the <slash> character).

Locale definition files passed to the localedef utility are assumed to be in coded
character set IBM-850.

Each category source definition consists of a category header, a category body, and a
category trailer, in that order.

category header

consists of the keyword naming the category. Each category
name starts with the characters LC_ The following category
names are supported: LC_CTYPE, LC_COLLATE, LC_NUMERIC,
LC_MONETARY, LC_TIME, LC_MESSAGES, LC_TOD, and
LC_SYNTAX.

The LC_TOD and LC_SYNTAX categories, if present, must be
the last two categories in the locale definition file.

category body

consists of one or more lines describing the components of
the category. Each component line has the following format:

 <identifer> <operand1>
 <identifer> <operand1>;<operand2>;...;<operandN>

<identifier> is a keyword that identifies a locale element,
or a symbolic name that identifies a collating element.
<operand> is a character, collating element, or string literal.
Escape sequences can be specified in a string literal using the
<escape_character>. If multiple operands are specified,
they must be separated by semicolons. White space can be
before and after the semicolons.

 Chapter 8. Building a Locale 121

Building a Locale

category trailer

consists of the keyword END followed by one or more
<blank>s and the category name of the corresponding
category header.

Here is an example of locale source containing the header, body, and trailer:

Here is a simple locale definition file consisting of one
category source definition, LC_CTYPE.

 LC_CTYPE
 upper <A>;...;<Z>
 END LC_CTYPE

You do not have to define each category. Where category definitions are absent from
the locale source, default definitions are used.

In each category the keyword copy followed by a string specifies the name of an
existing locale to be used as the source for the definition of this category. The
compiler searches for a specified existing locale as follows:

1. If you specify a path, the compiler searches that path.
2. If you specify a file name but no path, the compiler searches the current

directory.
3. If you specify a file name but no path and the file is not in the current directory,

the compiler searches the paths that you specified in the DPATH environment
variable.

If the locale is not found, an error is reported and no locale output is created.

You can continue a line in a locale definition file by placing an escape character as
the last character on the line. This continuation character is discarded from the input.
Even though there is no limitation on the length of each line, for portability reasons it
is suggested that each line be no longer than 2048 characters (bytes). There is no
limit on the accumulated length of a continued line. You cannot continue comment
lines on a subsequent line by using an escaped <newline>.

Individual characters, characters in strings, and collating elements are represented
using symbolic names, as defined below. Characters can also be represented as the
characters themselves, or as octal, hexadecimal, or decimal constants. If you use
non-symbolic notation, the resultant locale definition file may not be portable among
systems and environments. The left angle bracket (<) is a reserved symbol, denoting
the start of a symbolic name; if you use it to represent itself, you must precede it with
the escape character.

The following rules apply to the character representation:

122 VisualAge C++ Programming Guide

Building a Locale

1. A character can be represented by a symbolic name, enclosed within angle
brackets. The symbolic name, including the angle brackets, must exactly match a
symbolic name defined in the charmap file. The symbolic name is replaced by
the character value determined from the value associated with the symbolic name
in the charmap file.

The use of a symbolic name not found in the charmap file constitutes an error,
unless the name is in the category LC_CTYPE or LC_COLLATE, in which case it
constitutes a warning. Use of the escape character or right angle bracket within a
symbolic name is invalid unless the character is preceded by the escape character.
For example:

<c>;<c-cedilla> specifies two characters whose symbolic names are "c" and
"c-cedilla"

"<M><a><y>" specifies a 3-character string composed of letters represented
by symbolic names "M", "a", and "y".

"<a><\>>" specifies a 2-character string composed of letters represented
by symbolic names "a" and ">" (assuming the escape
character is \)

2. A character can represent itself. Within a string, the double quotation mark, the
escape character, and the left angle bracket must be escaped (preceded by the
escape character) to be interpreted as the characters themselves. For example:

c 'c' character represented by itself

"may" represents a 3-character string, each character within the string
represented by itself

"###"#>" represents the three character long string "#">", where the escape
character is defined as #.

3. A character can be represented as an octal constant. An octal constant is
specified as the escape character followed by two or more octal digits. Each
constant represents a byte value.

For example:

\131 "\212\129\168" \16\66\193\17

4. A character can be represented as a hexadecimal constant. A hexadecimal
constant is specified as the escape character, followed by an x, followed by two
or more hexadecimal digits. Each constant represents a byte value.

Example: \x83 "\xD4\x81\xA8"

5. A character can be represented as a decimal constant. A decimal constant is
specified as the escape character followed by a d followed by two or more
decimal digits. Each constant represents a byte value.

 Chapter 8. Building a Locale 123

Building a Locale

Example: \d131 "\d212\d129\d168" \d14\d66\d193\d15

Multibyte characters can be represented by concatenating constants specified in byte
order with the last constant specifying the least significant byte of the character.

Using the LOCALDEF Utility

The locale objects or locales are generated using the LOCALDEF utility. The
LOCALDEF utility:

1. Reads the locale definition file.

2. Resolves all the character symbolic names to the values of characters defined in
the specified character set definition file.

3. Produces a VisualAge C++ source file.

4. Compiles the source file using the VisualAge C++compiler and links the object
file to produce a locale module.

The locale module can be loaded by the setlocale function and then accessed by the
VisualAge C++ functions that are sensitive to the cultural information, or that can
query the locales. For a list of all the library functions sensitive to locale, see
“Locale-Sensitive Interfaces” on page 92. For detailed information on how to invoke
the LOCALDEF utility, see the User's Guide.

Locale Naming Conventions

The setlocale library function that selects the active locale maps the descriptive
locale name into the name of the locale object before loading the locale and making it
accessible.

In VisualAge C++ programs, the locale modules are referred to by descriptive locale
names. The locale names themselves are not case sensitive. They follow these
conventions:

<Language>_<Territory>.<Codeset>

Where:

Language

is a two-letter abbreviation for the language name. The abbreviations
come from the ISO 639 standard.

Territory

is a two-letter abbreviation for the territory name. The abbreviation
comes from the ISO 3166 standard.

124 VisualAge C++ Programming Guide

Building a Locale

Codeset

is the name registered by the MIT X Consortium that identifies the
registration authority that owns the specific encoding.

A modifier may be added to the registered name but is not required. The
modifier is of the form @modifier and identifies the coded character set
as defined by that registration authority.

Note: On FAT file systems, the modifier cannot be used as it causes the
filename to exceed the 8 character FAT filename limit.

The Codeset parts are optional. If they are not specified, Codeset defaults to
IBM-nnn, where nnn is the current code page. (The modifier portion defaults to
nothing.)

The locale name parameter is used to locate the locale as follows:

¹ If the locale name contains the drive letter (for example, C:) or the backslash
character, it is a fully-qualified name (such as \IBMCPP\LOCALE\FRED\IBM-850).
The name must specify the name of a DLL that contains the locale. If you do
not specify the extension .LCL, it is appended to the name.

¹ If the locale name does not contain a drive letter or the backslash character, it is
not a fully-qualified name. The setlocale function tries to load the locale from
the current directory, or from the directories that you specified in the LOCPATH
environment variable. The specified paths are searched to find the DLL that
contains the locale.

The locale name parameter is processed to produce a filename suitable for use with
the FAT file system:

1. The locale name parameter is separated into two parts, language_territory and
codeset.

2. If you specify the codeset name, the locale name is built as:

 language_territory\codeset.LCL

3. If you do not specify the codeset name, the locale name is built as
language_territory.LCL.

4. If the locale cannot be found, the DosQueryCp function determines the current
codepage. The codeset name is built as IBM-nnn, where nnn is the current
codepage.

The locale name is then built as:

 language_territory\codeset.LCL

The following locale names are provided:

 Chapter 8. Building a Locale 125

Building a Locale

Figure 12 (Page 1 of 3). Compiled locales supplied with VisualAge C++

Locale Name as in

setlocale()

argument

Language Country Codeset Locale Module

Name

C

DA_DK.IBM-850 Danish Denmark IBM-850 DA_DK\IBM-850

DA_DK.IBM-865 Danish Denmark IBM-865 DA_DK\IBM-865

DE_CH.IBM-437 Deutsch
(German)

Switzerland IBM-437 DE_CH\IBM-437

DE_CH.IBM-850 Deutsch
(German)

Switzerland IBM-850 DE_CH\IBM-850

DE_DE.IBM-437 Deutsch
(German)

Germany IBM-437 DE_DE\IBM-437

DE_DE.IBM-850 Deutsch
(German)

Germany IBM-850 DE_DE\IBM-850

EN_GB.IBM-437 English United
Kingdom

IBM-437 EN_GB\IBM-437

EN_GB.IBM-850 English United
Kingdom

IBM-850 EN_GB\IBM-850

EN_JP.IBM-437 English Japan IBM-437 EN_JP\IBM-437

EN_JP.IBM-850 English Japan IBM-850 EN_JP\IBM-850

EN_US.IBM-437 English United
States

IBM-437 EN_US\IBM-437

EN_US.IBM-850 English United
States

IBM-850 EN_US\IBM-850

ES_ES.IBM-437 Español
(Spanish)

Spain IBM-437 EN_ES\IBM-437

ES_ES.IBM-850 Español
(Spanish)

Spain IBM-850 EN_ES\IBM-850

FI_FI.IBM-437 Finnish Finland IBM-437 FI_FI\IBM-437

FI_FI.IBM-850 Finnish Finland IBM-850 FI_FI\IBM-850

126 VisualAge C++ Programming Guide

Building a Locale

Figure 12 (Page 2 of 3). Compiled locales supplied with VisualAge C++

Locale Name as in

setlocale()

argument

Language Country Codeset Locale Module

Name

FR_BE.IBM-437 French Belgium IBM-437 FR_BE\IBM-437

FR_BE.IBM-850 French Belgium IBM-850 FR_BE\IBM-850

FR_CA.IBM-850 French Canada IBM-850 FR_CA\IBM-850

FR_CA.IBM-863 French Canada IBM-863 FR_CA\IBM-863

FR_CH.IBM-437 French Switzerland IBM-437 FR_CH\IBM-437

FR_CH.IBM-850 French Switzerland IBM-850 FR_CH\IBM-850

FR_FR.IBM-437 French France IBM-437 FR_FR\IBM-437

FR_FR.IBM-850 French France IBM-850 FR_FR\IBM-850

IS_IS.IBM-850 Íslensk
(Icelandic)

Iceland IBM-850 IS_IS\IBM-850

IS_IS.IBM-861 Íslensk
(Icelandic)

Iceland IBM-861 IS_IS\IBM-861

IT_IT.IBM-437 Italian Italy IBM-437 IT_IT\IBM-437

IT_IT.IBM-850 Italian Italy IBM-850 IT_IT\IBM-850

JA_JP.IBM-932 Japanese Japan IBM-932 JA_JP\IBM-932

NL_BE.IBM-437 Nederlands
(Dutch)

Belgium IBM-437 NL_BE\IBM-437

NL_BE.IBM-850 Nederlands
(Dutch)

Belgium IBM-850 NL_BE\IBM-850

NL_NL.IBM-437 Nederlands
(Dutch)

Netherlands IBM-437 NL_NL\IBM-437

NL_NL.IBM-850 Nederlands
(Dutch)

Netherlands IBM-850 NL_NL\IBM-850

 Chapter 8. Building a Locale 127

Building a Locale

The exceptions to the rule above are the following special locale names, which are
already recognized:

 ¹ C
 ¹ POSIX
 ¹ GERM
 ¹ FRAN
 ¹ UK
 ¹ ITAL
 ¹ SPAI
 ¹ USA
 ¹ JAPN
 ¹ JAP2
 ¹ JAP3
¹ CDEF which is compatible with C locale from the previous release.

Figure 12 (Page 3 of 3). Compiled locales supplied with VisualAge C++

Locale Name as in

setlocale()

argument

Language Country Codeset Locale Module

Name

NO_NO.IBM-850 Norwegian Norway IBM-850 NO_NO\IBM-850

NO_NO.IBM-865 Norwegian Norway IBM-865 NO_NO\IBM-865

PT_PT.IBM-850 Portuguese Portugal IBM-850 PT_PT\IBM-850

PT_PT.IBM-860 Portuguese Portugal IBM-860 PT_PT\IBM-860

SV_SE.IBM-437 Svensk
(Swedish)

Sweden IBM-437 SV_SE\IBM-437

SV_SE.IBM-850 Svensk
(Swedish)

Sweden IBM-850 SV_SE\IBM-850

TR_TR.IBM-857 Turkish Turkey IBM-857 TR_TR\IBM-857

128 VisualAge C++ Programming Guide

Building a Locale

You can use the following macros, defined in the locale.h header file, as synonyms
for the special locale names above.

Macro Locale

LC_C "C"

LC_C_GERMANY "GERM"

LC_C_FRANCE "FRAN"

LC_C_UK "UK"

LC_C_ITALY "ITAL"

LC_C_SPAIN "SPAI"

LC_C_USA "USA"

LC_C_JAPAN "JAPN"

LC_C_JAPAN2 "JAP2"

LC_C_JAPAN3 "JAP3"

 Chapter 8. Building a Locale 129

Building a Locale

130 VisualAge C++ Programming Guide

Advanced Topics

 Part 4. Advanced Topics

This part describes some of the advanced features of the VisualAge C++ compiler.

Chapter 9. Using Templates in C++ Programs 133
Template Terms . 133
How the Compiler Expands Templates . 134
Example of Generating Template Function Definitions 135
Including Defining Templates . 137
Mixing Old and New Templates . 144

Chapter 10. Calling Conventions . 147
Using Linkage Keywords to Specify the Calling Convention 148
_Optlink Calling Convention . 150
_System Calling Convention . 170
_Pascal and _Far32_Pascal Calling Conventions 178
__stdcall Calling Convention . 184
__cdecl Calling Convention . 185

Chapter 11. Developing Virtual Device Drivers 187
Creating Code to Run at Ring Zero . 187
Using Virtual Device Driver Calling Conventions 188
Using _Far32 _Pascal Function Pointers . 189
Creating a Module Definition File . 190

Chapter 12. Calling between 32-Bit and 16-Bit Code 191
Linking 32-bit and 16-bit Code . 191
Calling 16-bit Code . 191
Calling Back to 32-bit Code from 16-bit Code 198
Passing Data between 16-bit and 32-bit Code 199
Sharing Data between 32-bit and 16-bit Code 201

Chapter 13. Developing Subsystems . 205
Creating a Subsystem . 205
Building a Subsystem DLL . 208
Compiling Your Subsystem . 211
Restrictions When You Are Using Subsystems 212
Example of a Subsystem DLL . 212
Creating Your Own Subsystem Runtime Library DLLs 213

Chapter 14. Signal and OS/2 Exception Handling 217
Using C++ and OS/2 Exception Handling in the Same Program 218

 Copyright IBM Corp. 1992, 1995 131

Advanced Topics

Handling Signals . 218
Default Handling of Signals . 219
Establishing a Signal Handler . 221
Writing a Signal Handler Function . 221
Signal Handling Considerations . 224
Handling OS/2 Exceptions . 227
Creating Your Own OS/2 Exception Handler 232
Registering an OS/2 Exception Handler . 240
Handling Signals and OS/2 Exceptions in DLLs 243
Using OS/2 Exception Handlers for Special Situations 245
OS/2 Exception Handling Considerations . 246
Interpreting Machine-State Dumps . 249
Common Problems that Generate Exceptions 252

Chapter 15. Managing Memory . 253
Differentiating between Memory Management Functions 253
Managing Memory with Multiple Heaps . 258
Debugging Your Heaps . 273

Chapter 16. The IBM System Object Model 277
What is SOM? . 277
What is DTS? . 279
Interface Definition Language . 279
SOM and Upward Binary Compatibility of Libraries 280
SOM and Interlanguage Sharing of Objects and Methods 286
Interface Definition Language (IDL) Considerations 291
Differences between SOM and C++ . 294
Converting C++ Programs to SOM Using SOMAsDefault 307
Creating SOM-Compliant Programs by Inheriting from SOMObject 308
Creating Shared Class Libraries with SOM . 308
Using SOM Classes in DSOM Applications 309
System Object Model (SOM) Options . 309
Macro Defined for SOM . 313
Pragmas for Using SOM . 313

132 VisualAge C++ Programming Guide

Using Templates

 9 Using Templates in C++ Programs

Templates may be used in C++ to declare and define classes, functions, and static
data members of template classes. The C++ language describes the syntax and
meaning of each kind of template. Each particular compiler, however, determines the
mechanism that controls when and how often a template is expanded.

VisualAge C++ offers several alternative organizations with a range of convenience
and compile performance to meet the needs of any application. This chapter
describes those alternatives and the criteria you should use to select which one is
right for you. For a general description of templates, see the online Language

Reference.

CAUTION:

Do not attempt to link objects produced from compiling the assembler listings of

programs containing templates. Even if the listing does compile, it will not link

correctly. (The linker may perform the link without error but the .EXE will

produce incorrect results.)

 Template Terms

The following terms are used to describe the template constructs in C++:

class template

A template used to generate classes. Classes generated in this fashion are
called template classes. A class template describes a family of related
classes. It can simply be a declaration, or it can can be a definition of a
particular class.

function template

A template used to generate functions. Functions generated in this
fashion are called template functions. A function template describes a
family of related functions. It can simply be a declaration, or it can be a
definition of a particular function.

declaring template

A class template or function template that includes a declaration but does
not include a definition. For example, this is what a declaring function
template would look like.

template<class A> void foo(A*a);

 Copyright IBM Corp. 1992, 1995 133

How the Compiler Expands Templates

A declaring class template would look like this

template<class T> class C;

defining template

A class template or function template declaration that includes a
definition. A defining function template would look like this:

template<class A> void foo(A*a) {a ->Bar();};

A defining class template would look like this:

template<class T> class C : public A {public: void boo();};

explicit definition

A user-supplied definition that overrides a template. For example, an
explicit definition of the foo() function would look like this:

void foo(int *a) {a++;}

An explicit definition of a template class looks like this:

class C<short> {
public: int moo();

 }

Instantiation

A defining template defines a whole family of classes or functions. An
instantiation of a template class or function is a a specific class or
function that is based on the template.

How the Compiler Expands Templates

You can choose from three alternatives for instantiating templates:

1. Including defining templates everywhere. See “Including Defining Templates
Everywhere” on page 137 for more details.

2. Using VisualAge C++'s automatic facility to ensure that there is a single
instantiation of the template. See “Structuring for Automatic Instantiation” on
page 137 for more details.

3. Manually structuring your code so that there is a single instantiation of the
template. See “Manually Structuring for Single Instantiation” on page 142 for
more details.

If you want to make the best choice amongst these alternatives, it is easiest if you
first understand how the compiler reacts when it encounters templates. When you use
templates in your program, the VisualAge C++ compiler automatically instantiates
each defining template that is:

¹ Referenced in the source code

134 VisualAge C++ Programming Guide

¹ Visible to the compiler (included as the result of an #include statement)
¹ Not explicitly defined by the programmer

If an application consists of several separate compilation units that are compiled
separately, it is possible that a given template is expanded in two or more of the
compilation units. For templates that define classes, inline functions, or static
nonmember functions, this is usually the desired behaviour. These templates
normally need to be defined in each compilation unit where they are used.

For other functions and for static data members, which have external linkage, defining
them in more than one compilation unit would normally cause an error when the
program is linked. VisualAge C++ avoids this problem by giving special treatment to
template-generated versions of these objects. At link time, VisualAge C++ gathers all
template-generated functions and static member definitions, plus any explicit
definitions, and resolves references to them in the following manner:

¹ If an explicit definition of the function or static member exists, it is used for all
references. All template-generated definitions of that function or static member
are discarded.

¹ If no explicit definition exists, one of the template-generated definitions is used
for all references. Any other template-generated definitions of that function or
static member are discarded.

Note that you may have only one explicit definition of any external linkage template
instance.

Example of Generating Template Function Definitions

The class template Stack provides an example of template function generation.
Stack implements a stack of items. The overloaded operators << and >> are used to
push items on to the stack and pop items from the stack. Assume that the declaration
of the Stack class template is contained in the file stack.h:

template <class Item, int size> class Stack {
 public:

int operator << (Item item); // push operator
int operator >> (Item& item); // pop operator
Stack() { top = 0; } // constructor defined inline

 private:
Item stack[size]; // stack of items
int top; // index to top of stack

 };

Figure 13. Declaration of Stack in stack.h

 Chapter 9. Using Templates in C++ Programs 135

In the template, the constructor function is defined inline. Assume the other functions
are defined using separate function templates in the file stack.c:

template <class Item, int size>
int Stack<Item,size>::operator << (Item item) {
if (top >= size) return 0;
stack[top++] = item;

 return 1;
 }

template <class Item, int size>
int Stack<Item,size>::operator >> (Item& item)

 {
if (top <= 0) return 0;
item = stack[--top];

 return 1;
 }

Figure 14. Definition of operator functions in stack.c

In this example, the constructor has internal linkage because it is defined inline in the
class template declaration. In each compilation unit that uses an instance of the
Stack class, the compiler generates the constructor function body. Each unit uses its
own copy of the constructor.

In each compilation unit that includes the file stack.c, for any instance of the Stack
class in that unit, the compiler generates definitions for the following functions
(assuming there is no explicit definition) :

 Stack<item,size>::operator<<(item)
 Stack<item,size>::operator>>(item&)

For example, given the following source file stack.cpp:

 #include "stack.h"
 #include "stack.c"

void Swap(int i&, Stack<int,20>& s)
 {
 int j;

s >> j;
s << i;
i = j;

 }

the compiler generates the functions Stack<int,20>::operator<<(int) and
Stack<int,20>::operator>>(int&) because both those functions are used in the
program, their defining templates are visible, and no explicit definitions were seen.

136 VisualAge C++ Programming Guide

Structuring for Automatic Instantiation

Including Defining Templates

The following sections describe the three methods of including defining templates and
how they would be applied to this example. The methods are:

¹ including defining templates everywhere
¹ structuring for automatic instantiation
¹ manually stucturing for single instantiation

Automatic instantiation is the recommended method.

Including Defining Templates Everywhere

The simplest way to instantiate templates is to include the defining template in every
compilation unit that uses the template. This alternative has the following
disadvantages:

¹ If you make even a trivial change to the implementation of a template, you must
recompile every compilation unit that uses it.

¹ The compilation process is slower, and the resulting object files are bigger
because the templates are expanded in every compilation unit where they are
used. Note, however, that the duplicated code for the templates is eliminated
during linking, so the executable files are not larger if you choose to include
defining templates everywhere.

For example, to use this method with the Stack template, include both stack.h and
stack.c in all compilation units that use an instance of the Stack class. The
compiler then generates definitions for each template function. Each template
function may be defined multiple times, increasing the size of the object file.

Structuring for Automatic Instantiation

The recommended way to instantiate templates is to structure your program for their
automatic instantiation. The advantages of this method are:

¹ It is easy to do.
¹ Unlike the method of including defining templates everywhere, you do not get

larger object files and slower compile times.
¹ Unlike the method of including defining templates everywhere, you do not have

to recompile all of the compilation units that use a template if that template
implementation is changed.

The disadvantages of this method are:

¹ It may not be practical in a team programming environment because the compiler
may update source files that are being modified at the same time by somebody
else.

 Chapter 9. Using Templates in C++ Programs 137

Structuring for Automatic Instantiation

¹ The modifications that are made to source files may not be file system
independent. For example, header files that are locally available may be included
rather than header files that are available on a network.

¹ There are some situations where the compiler cannot determine exactly which
header files should be included.

To use this facility:

1. Declare your template functions in a header file using class or function templates,
but do not define them. Include the header file in your source code.

2. For each header file, create a template-implementation file with the same name as
the header and the extension .c. Define the template functions in this
template-implementation file.

Note: Use the same compiler options to link your object files that you use to
compile them. For example, if you compile with the command:

icc /C /Gm /Sa myfile.cpp

link with the command:

icc /Tdp /Gm /Sa myfile.obj

This is especially important for options that control libraries, linkage, and
code compatibility. This does not apply to options that affect only the
creation of object code (for example, /C and /Fo). (Note that in the compile
step, the /Tdp was implicit because it is the default for files with the
extension .cpp.)

For each header file with template functions that need to be defined, the compiler
generates a template-include file. The template-include file generates #include
statements in that file for:

¹ The header file with the template declaration

¹ The corresponding template-implementation file

¹ Any other header files that declare types used in template parameters.

Important: If you have other declarations that are used inside templates but are not
template parameters, you must place or #include them in either the
template-implementation file or one of the header files that will be included as
a result of the above three steps. Define any classes that are used in template
arguments and that are required to generate the template function in the
header file. If the class definitions require other header files, include them
with the #include directive. The class definitions are then available in the
template-implementation file when the function definition is compiled. Do

138 VisualAge C++ Programming Guide

Structuring for Automatic Instantiation

not put the definitions of any classes used in template arguments in your
source code.

 foo.h
template<class T> void foo(T*);

 hoo.h
 void hoo(A*);

 foo.c
template<class T> void foo(T* t)

{t -> goo(); hoo(t);}

 other.h
class A {public: void goo() {} };

 main.cpp
 #include "foo.h"
 #include "other.h"
 #include "hoo.h"

int main() { A a; foo(&a); }

This requires the expansion of the foo(T*) template with "class A" as the
template type parameter. The compiler will create a template-include file
TEMPINC\foo.cpp. The file contents (simplified below) would be:

#include "foo.h" //the template declaration header
#include "other.h" //file defining template type parameter
#include "foo.c" //corresponding template implementation
void foo(A*); //triggers template instantiation

This won't compile properly because the header "hoo.h" didn't satisfy the
conditions for inclusion but the header is required to compile the body of
foo(A*). One solution is to move the declaration of hoo(A*) into the
"other.h" header.

The function definitions in your template-implementation file can be explicit
definitions, template definitions, or both. Any explicit definitions are used instead of
the definitions generated by the template.

Before it invokes the linker, the compiler compiles the template-include files and
generates the necessary template function definitions. Only one definition is
generated for each template function.

By default, the compiler stores the template-include files in the TEMPINC
subdirectory under the current directory. The compiler creates the TEMPINC directory
if it does not already exist. To redirect the template-include files to another directory,

 Chapter 9. Using Templates in C++ Programs 139

Structuring for Automatic Instantiation

use the /Ftdir compiler option, where dir is the directory to contain the
template-include files. You can specify a fully-qualified path name or a path name
relative to the current directory.

If you specify a different directory for your template-include files, make sure that you
specify it consistently for all compilations of your program, including the link step.

Note: After the compiler creates a template-include file, it may add information to
the file as each compilation unit is compiled. However, the compiler never
removes information from the file. If you remove function instantiations or
reorganize your program so that the template-include files become obsolete,
you may want to delete one or more of these files and recompile your
program. In addition, if error messages are generated for a file in the
TEMPINC directory, you must either correct the errors manually or delete the
file and recompile. To regenerate all of the template-include files, delete the
TEMPINC directory, the .OBJ files, and recompile your program.

If you do not delete the .OBJ files, typical MAKEFILE rules will prevent the
OBJs from being recompiled, and therefore the template-include files will not
be updated with all the lines needed for all the compilation units used in the
program. The end result would be that the link would fail.

Example of a Template-Implementation File

In the Stack example, the file stack.c is a template-implementation file. To create
a program using the Stack class template, stack.h and stack.c must reside in the
same directory. You would include stack.h in any source files that use an instance
of the class. The stack.c file does not need to be included in any source files.
Then, given the source file:

 #include "stack.h"

void Swap(int i&, Stack<int,20>& s)
 {
 int j;

s >> j;
s << i;
i = j;

 }

the compiler automatically generates the functions
Stack<int,20>::operator<<(int) and Stack<int,20>::operator>>(int&).

140 VisualAge C++ Programming Guide

Structuring for Automatic Instantiation

You can change the name of the template-implementation file or place it in a
different directory using the #pragma implementation directive. This #pragma

directive has the format:

 #pragma implementation(path)

where path is the path name for the template-implementation file. If it is only a
partial path name, it must be relative to the directory containing the header file.

Note: This path is a quoted string following the normal conventions for writing
string literals. In particular, backslashes must be doubled.

For example, in the Stack class, to use the file stack.def as the
template-implementation file instead of stack.c, add the line:

 #pragma implementation("stack.def")

anywhere in the stack.h file. The compiler then looks for the
template-implementation file stack.def in the same directory as stack.h.

Example of a Template-Include File

The following example shows the information you would find in a typical
template-include file generated by the compiler:

/*0000000000*/ #pragma sourcedir("c:\swearsee\src") ▌0▐
/*0698421265*/ #include "c:\swearsee\src\list.h" ▌1▐
/*0000000000*/ #include "c:\swearsee\src\list.c" ▌2▐
/*0698414046*/ #include "c:\swearsee\src\mytype.h" ▌3▐
/*0698414046*/ #include "c:\IBMCPP\INCLUDE\iostream.h" ▌4▐

 #pragma define(List<MyType>) ▌5▐
 ostream& operator<<(ostream&,List<MyType>); ▌6▐
 #pragma undeclared ▌7▐
 int count(List<MyType>); ▌8▐

▌0▐ This pragma ensures that the compiler will look for nested include files in the
directory containing the original source file, as required by the VisualAge C++
file inclusion rules.

▌1▐ The header file that corresponds to the template-include file. The number in
comments at the start of each #include line (for this line /*0698421265*/) is a
time stamp for the included file. The compiler uses this number to determine if
the template-include file is current or should be recompiled. A time stamp
containing only zeroes (0) as in line ▌2▐ means the compiler is to ignore the
time stamp.

▌2▐ The template-implementation file that corresponds to the header file in line ▌1▐

▌3▐ Another header file that the compiler requires to compile the template-include
file. All other header files that the compiler needs to compile the
template-include file are inserted at this point.

 Chapter 9. Using Templates in C++ Programs 141

Manually Structuring for Single Instantiation

▌4▐ Another header file required by the compiler. It is referenced in the function
declaration in line ▌6▐.

▌5▐ The compiler inserts #pragma define directives to force the definition of
template classes. In this case, the class List<MyType> is to be defined and its
member functions are to be generated.

▌6▐ The operator<< function is a nonmember function that matched a template
declaration in the list.h file. The compiler inserts this declaration to force the
generation of the function definition.

▌7▐ The #pragma undeclared directive is used only by the compiler and only in
template-include files. All template functions that were explicitly declared in at
least one compilation unit appear before this line. All template functions that
were called, but never declared, appear after this line. This division is
necessary because the C++ rules for function overload resolution treat declared
and undeclared template functions differently.

▌8▐ count is an example of a template function that was called but not declared.
The template declaration of the function must have been contained in list.h,
but the instance count(List<MyType>) was never declared.

Note: Although you can edit the template-include files, it is not normally necessary
or advisable to do so.

Manually Structuring for Single Instantiation

If you do not want to use the automatic instantiation method of generating template
function definitions, you can structure your program in such a way that you define
template functions directly in your compilation units. The advantages of this
approach are:

¹ Object files are smaller and compile times are shorter than they are when you
include defining templates everywhere. When you structure your code manually
for template instantiation, you avoid the potential problems that automatic
instantiation can cause, such as dependency on a particular file system or file
sharing problems.

There are also disadvantages to structuring your code manually for template
instantiation:

¹ You have to do more work than for the other two methods. You may have to
reorganize source files and create new compilation units.

¹ You have to be aware of all of the instantiations of templates that are required by
the entire program.

142 VisualAge C++ Programming Guide

Manually Structuring for Single Instantiation

Note: It is recommended that you use the compiler's automatic instantiation facility.
The manual structuring method described here is useful if you find you cannot work
around the limitations of the automatic instantiation method.

Use #pragma define directives to force the compiler to generate the necessary
definitions for all template classes used in other compilation units. Use explicit
declarations of non-member template functions to force the compiler to generate
them.

To use the second method, include stack.h in all compilation units that use an
instance of the Stack class, but include stack.c in only one of the files.
Alternatively, if you know what instances of the Stack class are being used in your
program, you can define all of the instances in a single compilation unit. For
example:

 #include "stack.h"
 #include "stack.c"

#include "myclass.h" // Definition of "myClass" class
 #pragma define(Stack<int,20>)
 #pragma define(Stack<myClass,100>)

The #pragma define directive forces the definition of two instances of the Stack
class without creating any object of the class. Because these instances reference the
member functions of that class, template function definitions are generated for those
functions. See the online Language Reference for more information about the
#pragma directive.

You can compile and link in one step or two, but you must use icc to invoke the
linker. For example, to compile and link stack.cpp, you could use the command:

 icc stack.cpp

or the commands:

icc /C stack.cpp
icc /Tdp stack.obj

(Note that in the first example, you need not specify the /Tdp option because it is the
default for files with the extension .cpp.)

When you use these methods, you may also need to specify the /Ft- option to ensure
that the compiler does not also automatically create the TEMPINC files according to the
automatic generation facility.

 Chapter 9. Using Templates in C++ Programs 143

Mixing Old and New Templates

Mixing Old and New Templates

The way that VisualAge C++ resolves template functions and data is new for this
release of VisualAge C++. Previous releases used a different method (called the old

method in this section). The current method is an improvement because it gives
faster link times and reduces the size of the executable or DLL that is output.

In previous releases of VisualAge C++, when multiple template functions were
resolved to a single definition, the unused template generated functions were not
removed and became “dead code” in the linker output. The current release of
VisualAge C++ does not do this. Because of this, the option of including defining
templates everywhere (see “Including Defining Templates Everywhere” on page 137
for details) no longer results in larger executables.

If you want to link together objects containing template functions generated by the
current release of VisualAge C++ and objects containing template functions generated
by previous releases, you must link with ICC using the /Gk+ option.

When you specify this option, ICC uses the template resolution method from previous
releases of VisualAge C++. (In addition, this option causes ICC to supply the
/OLDCPP option to the linker.) When you link objects containing template functions
using ICC with the /Gk+ option:

¹ If a user-supplied template function exists, it will be selected. If a
template-generated function body was created by the old method, it will not be
removed from the executable, but if it was created by the current method it will
be removed.

¹ If no user-supplied function exists, but one or more template-generated functions
created by the old method does exist, then one of these template-generated
functions will be selected. The other template-generated functions created by the
old method will not be removed, but those created by the current method will be
removed.

¹ If no user-supplied function and no template-generated functions created by the
old method exist, one new template-generated function will be selected. Other
template-generated functions created by the current method will be removed.

Note: If you do not specify the /Gk+ option, the linker produces an error message
asking you to link using /OLDCPP. If you get this error message, you should relink
using ICC with the /Gk+ option.

The current method of resolving template static data members is also better than the
method used in previous releases of VisualAge C++. The old method had the
following limitations:

144 VisualAge C++ Programming Guide

Mixing Old and New Templates

¹ You could not combine template definitions of static data members with explicit
definitions. If you tried to use a static member template in one compilation unit
and an explicit definition in another, the linker generated an error about multiple
definitions.

¹ Static data members defined by templates were not visible as dictionary entries in
libraries. If your program referenced a static member defined in a library object,
but did not reference any other external symbols in that object, the linker would
not extract the object from the library.

When you use the current release of VisualAge C++ to create the objects that are
linked together, these restrictions no longer apply. If you mix object files that were
created using a previous release with object files created using the current release,
these limitations still apply to static members for which one or more old
template-generated instances exists in the old objects.

 Chapter 9. Using Templates in C++ Programs 145

Mixing Old and New Templates

146 VisualAge C++ Programming Guide

Calling Conventions

10 Calling Conventions

This chapter describes the calling conventions used by the VisualAge C++ compiler
for both C and C++:

 ¹ _Optlink

 ¹ _System

¹ _Pascal and _Far32 _Pascal

 ¹ __stdcall

 ¹ __cdecl

 ¹ 32/16-bit conventions:
 _Far16_Cdecl

 _Far16 _Pascal

 _Far16 _Fastcall

The _Optlink convention is specific to VisualAge C++ compiler and is the fastest
method of calling C or C++ functions or assembler routines, but it is not standard for
all OS/2 applications. The _Optlink calling convention is described in more detail in
“_Optlink Calling Convention” on page 150.

The _System calling convention, while slower, is standard for all OS/2 applications
and is used for calling OS/2 APIs. For a description of the _System calling
convention, see “_System Calling Convention” on page 170.

The _Pascal and _Far32 _Pascal conventions are used to develop virtual device
drivers. The _Far32 _Pascal convention can only be used for applications written in
C that run at ring zero (compiled with the /Gr+ option). More information about the
_Pascal and _Far32 _Pascal conventions can be found in “_Pascal and
_Far32_Pascal Calling Conventions” on page 178.

Notes:

1. You cannot call a function using a different calling convention than the one with
which it is compiled. For example, if a function is compiled with _System

linkage, you cannot later call it specifying _Optlink linkage.

2. VisualAge C++ does not allow functions that use the __stdcall calling
convention to have both the following characteristics:

 ¹ No prototype
¹ A variable number of arguments.

In particular, an unprototyped function that accepts a variable number of
arguments and uses the __stdcall calling convention will not link. This is

 Copyright IBM Corp. 1992, 1995 147

Calling Conventions

because __stdcall functions are referenced in .OBJ files using a name that is a
combination of the function name and the number of parameters that the function
takes. Therefore, if one compilation has defined it with a different number of
parameters than another compilation unit, the two references to the function will
have different external function names. The linker will not be able to resolve
them.

With prototyping, the compiler encodes the name in such a way that the number
of parameters becomes extraneous (irrelevant) information and so the two
references end up with the same external function name.

The different methods of calling 16-bit code from the VisualAge C++ compiler and
the 16-bit calling conventions are discussed in Chapter 12, “Calling between 32-Bit
and 16-Bit Code” on page 191.

You can specify any of the calling conventions for all functions within a program
using the /Mp (for _Optlink) or /Ms (for _System) compiler option. You can also
use the /Mt option to specify __stdcall and the /Mc option to specify __cdecl.

Using Linkage Keywords to Specify the Calling Convention

In addition to using options to specify the calling convention for all of the functions
in a program, you can also use linkage keywords to specify the calling convention for
individual functions. The linkage keywords and their equivalent calling convention
suboptions of /Mp and /Ms are listed in the following table. Linkage keywords take
precedence over the compiler option, if both are specified.

Figure 15 (Page 1 of 2). Equivalent Linkage Keywords and Compiler Suboptions

Linkage Keyword Equivalent Compiler Suboption

extern "SYSTEM" _System

extern "OPTLINK" _Optlink

extern "FAR16 CDECL" _Far16_Cdecl

extern "FAR16 PASCAL" _Far16 _Pascal

extern "FAR16 FASTCALL" _Far16 _Fastcall

extern "C" _Optlink suboption for /Mp, system
suboption for /Ms

extern "C++" _Optlink with mangling, overloading, etc.

extern "BUILTIN" _Builtin

extern "PASCAL" _Pascal

extern "__stdcall" __stdcall

148 VisualAge C++ Programming Guide

Calling Conventions

Note: C++ member functions always use the _Optlink calling convention, but they
also have long internal names (called mangled names) that encode their containing
class name and parameter types. Nonstatic member functions also have an implicit
this parameter that refers to the object on which they are invoked. This combination
of _Optlink rules, name mangling, and the this parameter is called C++ linkage, and
it is considered distinct from _Optlink alone.

In C programs, you can also use #pragma linkage for all but __stdcall and __cdecl.
However, you should using the pragma and use the linkage keywords discussed above
instead. Problems encountered when using #pragma linkage include:

¹ it does not exist in C++, so it can't be used in any headers that will be used in C
and C++.

¹ it is difficult to mark function pointers with #pragma linkage, especially if they
are in structures or hidden behind arrays.

¹ code which uses #pragma linkage tends to be less clear than code using the
other methods described earlier.

The following examples illustrate the drawbacks.

/* Defining a callback function using #pragma linkage */
typedef int foo(void);
#pragma linkage(foo, system)
struct ss {
 int x:
 foo callback;
};

Observe the improved clarity when the same code is written using keywords:

/* Defining a callback function using keywords */
struct ss {
 int x;
int (* _System callback)(void);

};

Furthermore, there are cases where necessary conversions don't happen when #pragma
linkage is used. Consider the following:

void func16(char *); /*Parameter needs to be converted */
func() {
func16(pointer_variable); /* Conversion doesn't happen... */

}
#pragma linkage (func16, far16 pascal) /* ... because pragma linkage

occurs after the call */

Figure 15 (Page 2 of 2). Equivalent Linkage Keywords and Compiler Suboptions

Linkage Keyword Equivalent Compiler Suboption

extern "__cdecl" __cdecl

 Chapter 10. Calling Conventions 149

_Optlink Calling Convention

Here's the equivalent code using keywords:

void _Far16 _pascal func16(char *);
func() {
func16(pointer_variable): /* Conversion does happen properly */

}

See the User's Guide for more details on setting the calling convention and on
compiler options. For information about linkage keywords and #pragma linkage,
see the online Language Reference.

_Optlink Calling Convention

This is the default calling convention. It is an alternative to the _System convention
that is normally used for calls to the operating system. It provides a faster call than
the _System convention, while ensuring conformance to the ANSI and SAA language
standards.

You can explicitly give a function the _Optlink convention with the _Optlink

keyword.

Features of _Optlink

¹ Parameters are pushed from right to left onto the stack to allow for varying
length parameter lists without having to use hidden parameters.

¹ The caller cleans up the parameters.

¹ The general-purpose registers EBP, EBX, EDI, and ESI are preserved across the
call.

¹ The general-purpose registers EAX, EDX, and ECX are not preserved across the
call.

¹ Floating-point registers are not preserved across the call.

¹ The three conforming parameters that are lexically leftmost (conforming
parameters are 1, 2, and 4-byte signed and unsigned integers, enumerations, and
all pointer types) are passed in EAX, EDX, and ECX, respectively.

¹ Up to four floating-point parameters (the lexically first four) are passed in
extended-precision format (80-bit) in the floating-point register stack.

¹ All other parameters are passed on the 80386 stack.

¹ Space for the parameters in registers is allocated on the stack, but the parameters
are not copied into that space.

¹ Conforming return values are returned in EAX.

150 VisualAge C++ Programming Guide

_Optlink Calling Convention

¹ Floating-point return values are returned in extended-precision format in the
topmost register of the floating-point stack.

¹ When you call external functions, the floating-point register stack contains only
valid parameter registers on entry and valid return values on exit. (When you
call functions in the current compilation unit that do not call any other functions,
this state may not be true.)

¹ Under some circumstances, the compiler will not use EBP to access automatic
and parameter values, thus increasing the efficiency of the application. Whether
it is used or not, EBP will not change across the call.

¹ Calls with aggregates returned by value pass a hidden first parameter that is the
address of a storage area determined by the caller. This area becomes the
returned aggregate. The hidden pointer parameter is always considered
"nonconforming", and is not passed in a register. The called function must load
it into EAX before returning.

¹ The direction flag must be clear upon entry to functions and clear on exit from
functions. The state of the other flags is ignored on entry to a function and
undefined on exit.

¹ The compiler will not change the contents of the floating-point control register.
If you want to change the control register contents for a particular operation, save
the contents before making the changes and restore them after the operation.

¹ In a prototyped function taking a variable number of parameters (that is, one
whose parameter list ends in an elipsis), only the parameters preceding the elipsis
are eligible to be passed in registers.

Tips for Using _Optlink

To obtain the best performance when using the _Optlink convention, follow these
tips:

¹ Prototype all function declarations for better performance. The C++ language
requires all functions to have prototypes.

Note: All calls and functions must be prototyped consistently; that is, functions
declared more than once must have identical prototypes. If prototyping is
not consistent, the results will be undefined.

¹ Place the conforming and floating-point parameters that are most heavily used
lexically leftmost in the parameter list so they will be considered for registers
first. If they are adjacent to each other, the preparation of the parameter list will
be faster.

¹ If you have a parameter that is only used near the end of a function, put it at or
near the end of the parameter list. If all of your parameters are only used near
the end of functions, consider using _System linkage.

 Chapter 10. Calling Conventions 151

Eyecatchers

¹ If you are passing structures by value, put them at the end of the parameter list.

¹ Avoid using variable arguments in nonprototype functions. This practice results
in undefined behavior under the ANSI C standard.

¹ If you have a variable-length argument list, consider using _System linkage. It is
faster in this situation.

¹ Compile with optimization on by specifying /O+.

For additional tips on how to improve the performance of your program, see
Chapter 4, “Optimizing Your Program” on page 35.

General-Purpose Register Implications

EAX, EDX, and ECX are used for the lexically first three conforming parameters
with EAX containing the first parameter, EDX the second, and ECX the third. Four
bytes of stack storage are allocated for each register parameter that is present, but the
parameters exist only in the registers at the time of the call.

If there is no prototype or an incomplete prototype for the function called, an
eyecatcher is placed after the call instruction to tell the callee how the register
parameters correspond to the stack storage mapped for them. Fully prototyped code
never needs eyecatchers.

Eyecatchers An eyecatcher is a recognizable sequence of bytes that tells unprototyped code
which parameters are passed in which registers. Eyecatchers apply only to code
without prototype statements.

The eyecatcher instruction is placed after the call instruction for a nonprototype
function. The choice of instruction for the eyecatcher relies on the fact that the TEST
instruction does not modify the referenced register, meaning that the return register of
the call instruction is not modified by the eyecatcher instruction. The absence of an
eyecatcher in unprototyped code implies that there are no parameters in registers.
(Note that this eyecatcher scheme does not allow the use of execute-only code
segments.)

The eyecatcher has the format:

TEST EAX, immed32

Note that the short-form binary encoding (A9) of TEST EAX must be used for the
eyecatcher instruction.

152 VisualAge C++ Programming Guide

Examples Using _Optlink

The 32-bit immediate operand is interpreted as a succession of 2-bit fields, each of
which describes a register parameter or a 4-byte slot of stack memory. Because only
one 32-bit read of the eyecatcher is made, only 24 bits of the immediate operand are
loaded. The actual number of parameters that can be considered for registers is
restricted to 12.

Because of byte reversal, the bits that are loaded are the low-order 24 bits of the
32-bit immediate operand. The highest-order 2-bit field of the 24 bits analyzed
corresponds to the lexically first parameter, while subsequent parameters correspond
to the subsequent lower-order 2-bit fields. The meaning of the values of the fields is
as follows:

Value Meaning

00 This value indicates that there are no parameters remaining to be put into
registers, or that there are parameters that could be put into registers but
there are no registers remaining. It also indicates the end of the
eyecatcher.

01 The corresponding parameter is in a general-purpose register. The
leftmost field of this value has its parameter in EAX, the second leftmost
(if it exists) in EDX, and the third (if it exists) in ECX.

10 The corresponding parameter is in a floating-point register and has 8
bytes of stack reserved for it (that is, it is a double). ST(0), ST(1),
ST(2), and ST(3) contain the lexically-first four floating-point parameters
(fewer registers are used if there are fewer floating-point parameters).
ST(0) contains the lexically first (leftmost 2-bit field of type 10 or 11)
parameter, ST(1) the lexically second parameter, and so on.

11 The corresponding parameter is in a floating-point register and has 16
bytes of stack reserved for it (that is, it is a long double).

Examples of Passing Parameters

The examples on the following pages are included for purposes of illustration and
clarity only. They have not been optimized. These examples assume that you are
familiar with programming in assembler. Note that, in each example, the stack grows
toward the bottom of the page, and ESP always points to the top of the stack.

 Chapter 10. Calling Conventions 153

Examples Using _Optlink

Passing

Conforming

Parameters to

a Prototyped

Routine

The following example shows the code sequences and a picture of the stack
for a call to the function foo:

long foo(char p1, short p2, long p3, long p4);

 short x;
 long y;

y = foo('A', x, y+x, y);

Caller's code surrounding call:

PUSH y ; Push p4 onto the 80386 stack
SUB ESP, 12 ; Allocate stack space for

 ; register parameters
MOV AL, 'A' ; Put p1 into AL
MOV DX, x ; Put p2 into DX
MOVSX ECX, DX ; Sign-extend x to long
ADD ECX, y ; Calculate p3 and put it into ECX
CALL FOO ; Make call

Stack Just After Call Register Set Just After Call

 │ │ ┌─────────┬────┬────┐
│ caller's Local │ EAX │ undefined │ p1 │

 ├────────────────────┤ ├─────────┼────┼────┤
 │ p4 │ EBX │ caller's EBX │
 ├────────────────────┤ ├─────────┼────┼────┤

│ Blank Slot For p3 │ ECX │ p3 │ │
 ├────────────────────┤ ├─────────┼────┼────┤

│ Blank Slot For p2 │ EDX │undefined│ p2 │
 ├────────────────────┤ ├─────────┼────┴────┤

│ Blank Slot For p1 │ EDI │ caller's EDI │
 ├────────────────────┤ ├─────────┼─────────┤

│ caller's EIP │ ESI │ caller's ESI │
 ESP────► └────────────────────┘ └─────────┴─────────┘

Callee's prolog code:

PUSH EBP ; Save caller's EBP
MOV EBP, ESP ; Set up callee's EBP
SUB ESP, callee's local size ; Allocate callee's Local
PUSH EBX ; Save preserved registers -
PUSH EDI ; will optimize to save
PUSH ESI ; only registers callee uses

154 VisualAge C++ Programming Guide

Examples Using _Optlink

Stack After Prolog Register Set After Prolog

 │ │ ┌──────────┬────┬────┐
│ caller's Local │ EAX │ undefined │ p1 │

 ├───────────────────┤ ├──────────┼────┼────┤
 │ p4 │ EBX │ undefined │
 ├───────────────────┤ ├──────────┼────┴────┤

│ Blank Slot For p3 │ ECX │ p3 │
 ├───────────────────┤ ├──────────┼────┬────┤

│ Blank Slot For p2 │ EDX │undefined │ p2 │
 ├───────────────────┤ ├──────────┼────┴────┤

│ Blank Slot For p1 │ EDI │ undefined │
 ├───────────────────┤ ├──────────┼─────────┤
 │ caller's EIP │ ESI │ undefined │
 ├───────────────────┤ └──────────┴─────────┘
 │ caller's EBP │
 ├───────────────────┤
 │ │
 . .
 . callee's Local .
 . .
 │ │
 ├───────────────────┤
 │ Saved EBX │
 ├───────────────────┤
 │ Saved EDI │
 ├───────────────────┤
 │ Saved ESI │
 ESP───► └───────────────────┘

Note: The term undefined in registers EBX, EDI, and ESI refers to the fact that
they can be safely overwritten by the code in foo.

Callee's epilog code:

MOV EAX, RetVal ; Put return value in EAX
POP ESI ; Restore preserved registers

 POP EDI
 POP EBX

MOV ESP, EBP ; Deallocate callee's local
POP EBP ; Restore caller's EBP
RET ; Return to caller

 Chapter 10. Calling Conventions 155

Examples Using _Optlink

Stack After Epilog Register Set After Epilog

 │ │ ┌─────────┬────┬───┐
│ caller's Local │ EAX │ Return│Value │

 ├───────────────────┤ ├─────────┼────┼───┤
 │ p4 │ EBX │ caller's EBX │
 ├───────────────────┤ ├─────────┼────┼───┤

│ Blank Slot For p3 │ ECX │ undefined │
 ├───────────────────┤ ├─────────┼────┼───┤

│ Blank Slot For p2 │ EDX │ undefined │
 ├───────────────────┤ ├─────────┼────┴───┤

│ Blank Slot For p1 │ EDI │ caller's EDI │
 │ │ ├─────────┼────────┤
 ESP────► └───────────────────┘ ESI │ caller's ESI │
 └─────────┴────────┘

Caller's code just after call:

ADD ESP, 16 ; Remove parameters from stack
MOV y, EAX ; Use return value.

Stack After Cleanup Register Set After Cleanup

 │ │ ┌─────────┬────┬───┐
│ caller's Local │ EAX │ Return│Value │

 ESP────► └────────────────┘ ├─────────┼────┼───┤
 EBX │ caller's EBX │
 ├─────────┼────┼───┤
 ECX │ undefined │
 ├─────────┼────┼───┤
 EDX │ undefined │
 ├─────────┼────┴───┤
 EDI │ caller's EDI │
 ├─────────┼────────┤
 ESI │ caller's ESI │
 └─────────┴────────┘

156 VisualAge C++ Programming Guide

Examples Using _Optlink

Passing Conforming Parameters to an Unprototyped Routine

This example differs from the previous one by providing:

¹ An eyecatcher after the call to foo in the caller's code
¹ The code necessary to perform the default widening rules required by ANSI
¹ The instruction to clean up the parameters from the stack.

If foo were an ellipsis routine with fewer than three conforming parameters in the
invariant portion of its parameter list, it would also include the code to interpret the
eyecatchers in its prolog.

y = foo('A', x, y+x, y);

Caller's code surrounding call:

PUSH y ; Push p4 onto the 80386 stack
SUB ESP, 12 ; Allocate stack space for register parameters
MOV EAX, 00000041h ; Put p1 into EAX (41 hex = A ASCII)
MOVSX EDX, x ; Put p2 into EDX
MOV ECX, y ; Load y to calculate p3
ADD ECX, x ; Calculate p3 and put it into ECX
CALL FOO ; Make call
TEST EAX, 00540000h ; Eyecatcher indicating 3 general-purpose

; register parameters (see page 152)
ADD ESP, 16 ; Clean up parameters after return

Passing Floating-Point Parameters to a Prototyped Routine

The following example shows code sequences, 80386 stack layouts, and floating-point
register stack states for a call to the routine fred. For simplicity, the general-purpose
registers are not shown.

double fred(float p1, double p2, long double p3, float p4, double p5);

double a, b, c;
 float d, e;

a = b + fred(a, d, (long double)(a + c), e, c);

 Chapter 10. Calling Conventions 157

Examples Using _Optlink

Caller's code up until call:

PUSH 2ND DWORD OF c ; Push upper 4 bytes of c onto stack
PUSH 1ST DWORD OF c ; Push lower 4 bytes of c onto stack
FLD DWORD_PTR e ; Load e into 80387, promotion

; requires no conversion code
FLD QWORD_PTR a ; Load a to calculate p3
FADD ST(0), QWORD_PTR c ; Calculate p3, result is long double

; from nature of 80387 hardware
FLD QWORD_PTR d ; Load d, no conversion necessary
FLD QWORD_PTR a ; Load a, demotion requires conversion
FSTP DWORD_PTR [EBP - T1] ; Store to a temp (T1) to convert to float
FLD DWORD_PTR [EBP - T1] ; Load converted value from temp (T1)
SUB ESP, 32 ; Allocate the stack space for

 ; parameter list
CALL FRED ; Make call

Stack Just After Call 80387 Register Set Just After Call

 ┌ ┐ ┌───────────────────┐
 │ caller's Local │ ST(7) │ Empty │
 ├─────────────────────┤ ├───────────────────┤

│ Upper Dword of p5 │ ST(6) │ Empty │
├─ ── ── ── ── ── ── ─┤ ├───────────────────┤
│ Lower Dword of p5 │ ST(5) │ Empty │

 ├─────────────────────┤ ├───────────────────┤
│ Blank Dword for p4 │ ST(4) │ Empty │

 ├─────────────────────┤ ├───────────────────┤
 │ Four │ ST(3) │ p4 (e) │

├─ ── ── ── ── ── ── ─┤ ├───────────────────┤
│ Blank │ ST(2) │ p3 (a + c) │
├─ ── ── ── ── ── ── ─┤ ├───────────────────┤

 │ Dwords │ ST(1) │ p2 (d) │
├─ ── ── ── ── ── ── ─┤ ├───────────────────┤

 │ for p3 │ ST(0) │ p1 (a) │
 ├─────────────────────┤ └───────────────────┘
 │ Two Blank │

├─ ── ── ── ── ── ── ─┤
│ Dwords for p2 │

 ├─────────────────────┤
│ Blank Dword for p1 │

 ├─────────────────────┤
 │ caller's EIP │
 ESP─────► └─────────────────────┘

158 VisualAge C++ Programming Guide

Examples Using _Optlink

Callee's prolog code:

PUSH EBP ; Save caller's EBP
MOV EBP, ESP ; Set up callee's EBP
SUB ESP, callee's local size ; Allocate callee's Local
PUSH EBX ; Save preserved registers -
PUSH EDI ; will optimize to save
PUSH ESI ; only registers callee uses

Stack After Prolog 80387 Register Set After Prolog

 │ │ ┌─────────────────┤
│ caller's Local │ ST(7) │ Empty │

 ├────────────────────┤ ├─────────────────┤
│ Upper Dword of p5 │ ST(6) │ Empty │
├─ ── ── ── ── ── ── ┤ ├─────────────────┤
│ Lower Dword of p5 │ ST(5) │ Empty │

 ├────────────────────┤ ├─────────────────┤
│ Blank Dword for p4 │ ST(4) │ Empty │

 ├────────────────────┤ ├─────────────────┤
 │ Four │ ST(3) │ p4 │

├─ ── ── ── ── ── ── ┤ ├─────────────────┤
 │ Blank │ ST(2) │ p3 │

├─ ── ── ── ── ── ── ┤ ├─────────────────┤
│ Dwords │ ST(1) │ p2 │
├─ ── ── ── ── ── ── ┤ ├─────────────────┤

 │ for p3 │ ST(0) │ p1 │
 ├────────────────────┤ └─────────────────┘
 │ Two Blank │

├─ ── ── ── ── ── ── ┤
│ Dwords for p2 │

 ├────────────────────┤
│ Blank Dword for p1 │

 ├────────────────────┤
 │ caller's EIP │
 ├────────────────────┤
 │ caller's EBP │
 ├────────────────────┤
 │ │
 . .
 . callee's Local .
 . .
 │ │
 ├────────────────────┤
 │ Saved EBX │
 ├────────────────────┤
 │ Saved EDI │
 ├────────────────────┤
 │ Saved ESI │
 ESP─────► └────────────────────┘

 Chapter 10. Calling Conventions 159

Examples Using _Optlink

Callee's epilog code:

FLD RETVAL ; Load return value onto floating-point stack
POP ESI ; Restore preserved registers

 POP EDI
 POP EBX

MOV ESP, EBP ; Deallocate callee's local
POP EBP ; Restore caller's EBP
RET ; Return to caller

Stack After Epilog 80387 Register Set After Epilog

 │ │ ┌──────────────────┐
 │ caller's Local │ ST(7) │ Empty │
 ├─────────────────────┤ ├──────────────────┤

│ Upper Dword of p5 │ ST(6) │ Empty │
├─ ── ── ── ── ── ── ─┤ ├──────────────────┤
│ Lower Dword of p5 │ ST(5) │ Empty │

 ├─────────────────────┤ ├──────────────────┤
│ Blank Dword for p4 │ ST(4) │ Empty │

 ├─────────────────────┤ ├──────────────────┤
 │ Four │ ST(3) │ Empty │

├─ ── ── ── ── ── ── ─┤ ├──────────────────┤
 │ Blank │ ST(2) │ Empty │

├─ ── ── ── ── ── ── ─┤ ├──────────────────┤
 │ Dwords │ ST(1) │ Empty │

├─ ── ── ── ── ── ── ─┤ ├──────────────────┤
│ for p3 │ ST(0) │ Return Value │

 ├─────────────────────┤ └──────────────────┘
 │ Two Blank │

├─ ── ── ── ── ── ── ─┤
│ Dwords for p2 │

 ├─────────────────────┤
│ Blank Dword for p1 │

 ESP─────► └─────────────────────┘

Caller's code just after call:

ADD ESP, 40 ; Remove parameters from stack
FADD QWORD_PTR b ; Use return value
FSTP QWORD_PTR a ; Store expression to variable a

160 VisualAge C++ Programming Guide

Examples Using _Optlink

Stack After Cleanup 80387 Register Set After Cleanup

 │ │ ┌────────────────────┐
│ caller's Local │ ST(7) │ Empty │

 │ │ ├────────────────────┤
 ESP─────► └─────────────────┘ ST(6) │ Empty │
 ├────────────────────┤
 ST(5) │ Empty │
 ├────────────────────┤
 ST(4) │ Empty │
 ├────────────────────┤
 ST(3) │ Empty │
 ├────────────────────┤
 ST(2) │ Empty │
 ├────────────────────┤
 ST(1) │ Empty │
 ├────────────────────┤
 ST(0) │ Return Value │
 └────────────────────┘

Passing Floating-Point Parameters to an Unprototyped Routine

This example differs from the previous floating-point example by the presence of an
eyecatcher after the call to fred in the caller's code and the code necessary to
perform the default widening rules required by ANSI.

double a, b, c;
 float d, e;

a = b + fred(a, d, (long double)(a + c), e, c);

Caller's code up until call:

PUSH 2ND DWORD OF c ; Push upper 4 bytes of c onto stack
PUSH 1ST DWORD OF c ; Push lower 4 bytes of c onto stack
FLD DWORD_PTR e ; Load e into 80387, promotion

; requires no conversion code
FLD QWORD_PTR a ; Load a to calculate p3
FADD ST(0), QWORD_PTR c ; Calculate p3, result is long double

; from nature of 80387 hardware
FLD QWORD_PTR d ; Load d, no conversion necessary
FLD QWORD_PTR a ; Load a, no conversion necessary
SUB ESP, 40 ; Allocate the stack space for

 ; parameter list
CALL FRED ; Make call
TEST EAX, 00ae0000h ; Eyecatcher maps the register parameters
ADD ESP, 48 ; Clean up parameters from stack

 Chapter 10. Calling Conventions 161

Examples Using _Optlink

Passing and Returning Aggregates by Value to a Prototyped Routine

If an aggregate is passed by value, the following code sequences are produced for the
caller and callee:

'C' Source:

struct s_tag {
 long a;
 float b;
 long c;

} x, y;
 long z;
 double q;

/* Prototype */
struct s_tag bar(long lvar, struct s_tag aggr, float fvar);

...

/* Actual Call */
y = bar(z, x, q);

...

/* callee */
struct s_tag bar(long lvar, struct s_tag aggr, float fvar)

 {
struct s_tag temp;

temp.a = lvar + aggr.a + 23;
temp.b = fvar - aggr.b;
temp.c = aggr.c

 return temp;
 }

162 VisualAge C++ Programming Guide

Examples Using _Optlink

Caller's code up until call:

FLD QWORD_PTR q ; Load lexically first floating-point
; parameter to be converted

FSTP DWORD_PTR [EBP - T1] ; Convert to formal parameter type by
FLD DWORD_PTR [EBP - T1] ; Storing and loading from a temp (T1)
SUB ESP, 4 ; Allocate space for the floating-point

 ; register parameter
PUSH x.c ; Push nonconforming parameters on

 PUSH x.b ; stack
 PUSH x.a ;

MOV EAX, Z ; Load lexically first conforming
; parameter into EAX

SUB ESP, 4 ; Allocate stack space for the first
; general-purpose register parameter.

PUSH addr y ; Push hidden first parameter (address of
 ; return space)
 CALL BAR

 Chapter 10. Calling Conventions 163

Examples Using _Optlink

Stack Just After Call General-Purpose Registers Just After Call

 │ │ ┌────────┬────┬───┐
│ caller's Local │ EAX │ z │

 ├─────────────────────┤ ├────────┼────┼───┤
│ Blank Slot for q │ EBX │ caller's EBX │

 ├─────────────────────┤ ├────────┼────┼───┤
│ x.c │ ECX │ undefined │

 ├─────────────────────┤ ├────────┼────┼───┤
│ x.b │ EDX │ undefined │

 ├─────────────────────┤ ├────────┼────┴───┤
 │ x.a │ EDI │ caller's EDI │
 ├─────────────────────┤ ├────────┼────────┤

│ Blank Slot for z │ ESI │ caller's ESI │
 ├─────────────────────┤ └────────┴────────┘

│ Hidden Ret Val Addr │
 ├─────────────────────┤
ESP─────► │ caller's EIP │
 └─────────────────────┘

80387 Register Set Just After Call

 ┌──────────────────┐
 ST(7) │ Empty │
 ├──────────────────┤
 ST(6) │ Empty │
 ├──────────────────┤
 ST(5) │ Empty │
 ├──────────────────┤
 ST(4) │ Empty │
 ├──────────────────┤
 ST(3) │ Empty │
 ├──────────────────┤
 ST(2) │ Empty │
 ├──────────────────┤
 ST(1) │ Empty │
 ├──────────────────┤

ST(0) │ fvar [(float)q] │
 └──────────────────┘

Callee's prolog code:

PUSH EBP ; Save caller's EBP
MOV EBP, ESP ; Set up callee's EBP
SUB ESP, 12 ; Allocate callee's Local

; = sizeof(struct s_tag)
PUSH EBX ; Save preserved registers -
PUSH EDI ; will optimize to save
PUSH ESI ; only registers callee uses

164 VisualAge C++ Programming Guide

Examples Using _Optlink

Stack After Prolog Register Set After Prolog

 │ │ ┌─────────┬────┬────┐
 │ caller's Local │ EAX │ lvar│(z) │
 ├─────────────────────┤ ├─────────┼────┼────┤

│ Blank Slot for q │ EBX │ caller's EBX │
 ├─────────────────────┤ ├─────────┼────┼────┤

│ x.c │ ECX │ undefined │
 ├─────────────────────┤ ├─────────┼────┼────┤

│ x.b │ EDX │ undefined │
 ├─────────────────────┤ ├─────────┼────┴────┤

│ x.a │ EDI │ caller's EDI │
 ├─────────────────────┤ ├─────────┼─────────┤

│ Blank Slot for z │ ESI │ caller's ESI │
 ├─────────────────────┤ └─────────┴─────────┘

│ Hidden Ret Val Addr │
├─────────────────────┤ The term undefined
│ caller's EIP │ in registers ECX and EDX
├─────────────────────┤ refers to the fact that they
│ caller's EBP │ can be safely overwritten by
├─────────────────────┤ the code in bar.

 │ │
 . .
 . callee's Local .

. . 80387 Register Set Just After Call
 │ │
 ├─────────────────────┤ ┌────────────────────┐
 │ Saved EBX │ ST(7) │ Empty │
 ├─────────────────────┤ ├────────────────────┤
 │ Saved EDI │ ST(6) │ Empty │
 ├─────────────────────┤ ├────────────────────┤
 │ Saved ESI │ ST(5) │ Empty │
ESP─────► ├─────────────────────┤ ├────────────────────┤
 ST(4) │ Empty │
 ├────────────────────┤
 ST(3) │ Empty │
 ├────────────────────┤
 ST(2) │ Empty │
 ├────────────────────┤
 ST(1) │ Empty │
 ├────────────────────┤

ST(0) │ fvar [(float)q] │
 └────────────────────┘

 Chapter 10. Calling Conventions 165

Examples Using _Optlink

Callee's code:

temp.a = lvar + aggr.a + 23;
temp.b = fvar - aggr.b;
temp.c = aggr.c

 return temp;

 ADD EAX, 23 ;
ADD EAX, [EBP + 16] ; Calculate temp.a
MOV [EBP - 12], EAX ;

FSUB DWORD_PTR [EBP + 20] ; Calculate temp.b
FSTP DWORD_PTR [EBP - 8] ;

MOV EAX, [EBP + 24] ; Calculate temp.c
MOV [EBP - 4], EAX ;

MOV EAX, [EBP + 8] ; Load hidden parameter (address
; of return value storage). Useful
; both for setting return value
; and for returning address in EAX.

MOV EBX, [EBP - 12] ; Return temp by copying its contents
MOV [EAX], EBX ; to the return value storage
MOV EBX, [EBP - 8] ; addressed by the hidden parameter.
MOV [EAX + 4], EBX ; String move instructions would be
MOV EBX, [EBP - 4] ; faster above a certain threshold
MOV [EAX + 8], EBX ; size of returned aggregate.

POP ESI ; Begin Epilog by restoring
 POP EDI ; preserved registers.
 POP EBX

MOV ESP, EBP ; Deallocate callee's local
POP EBP ; Restore caller's EBP
RET ; Return to caller

166 VisualAge C++ Programming Guide

Examples Using _Optlink

Stack After Epilog General-Purpose Registers After Epilog

 │ │ ┌──────────┬────┬──────┐
│ caller's Local │ EAX │ Addr of Return Value │

 ├───────────────────┤ ├──────────┼────┼──────┤
│ Blank Slot for q │ EBX │ caller's EBX │

 ├───────────────────┤ ├──────────┼────┼──────┤
│ x.c │ ECX │ undefined │

 ├───────────────────┤ ├──────────┼────┼──────┤
│ x.b │ EDX │ undefined │

 ├───────────────────┤ ├──────────┼────┴──────┤
│ x.a │ EDI │ caller's EDI │

 ├───────────────────┤ ├──────────┼───────────┤
│ Blank Slot for z │ ESI │ caller's ESI │

 ├───────────────────┤ └──────────┴───────────┘
│ Hidden Return │

 │ Value Address │
ESP─────► └───────────────────┘

80387 Register Set After Epilog

 ┌──────────────────┐
 ST(7) │ Empty │
 ├──────────────────┤
 ST(6) │ Empty │
 ├──────────────────┤
 ST(5) │ Empty │
 ├──────────────────┤
 ST(4) │ Empty │
 ├──────────────────┤
 ST(3) │ Empty │
 ├──────────────────┤
 ST(2) │ Empty │
 ├──────────────────┤
 ST(1) │ Empty │
 ├──────────────────┤
 ST(0) │ Empty │
 └──────────────────┘

Caller's code just after call:

ADD ESP, 24 ; Remove parameters from stack
... ; Because address of y was given as the

; hidden parameter, the assignment of the
; return value has already been performed.

 Chapter 10. Calling Conventions 167

Examples Using _Optlink

Stack After Cleanup General-Purpose Registers After Cleanup

 │ │ ┌──────────┬────┬──────┐
│ caller's Local │ EAX │ Addr of Return Value │

 ESP─────► └─────────────────┘ ├──────────┼────┼──────┤
 EBX │ caller's EBX │
 ├──────────┼────┼──────┤

80387 Register Set After Cleanup ECX │ undefined │
 ├──────────┼────┼──────┤
 ┌─────────────────┐ EDX │ undefined │

ST(7) │ Empty │ ├──────────┼────┴──────┤
 ├─────────────────┤ EDI │ caller's EDI │

ST(6) │ Empty │ ├──────────┼───────────┤
 ├─────────────────┤ ESI │ caller's ESI │

ST(5) │ Empty │ └──────────┴───────────┘
 ├─────────────────┤

ST(4) │ Empty │
 ├─────────────────┤

ST(3) │ Empty │
 ├─────────────────┤

ST(2) │ Empty │
 ├─────────────────┤

ST(1) │ Empty │
 ├─────────────────┤

ST(0) │ Empty │
 └─────────────────┘

If a y.a = bar(x).b construct is used instead of the more common y = bar(x)
construct, the address of the return value is available in EAX. In this case, the
address of the return value (hidden parameter) would point to a temporary variable
allocated by the compiler in the automatic storage of the caller.

Passing and Returning Aggregates by Value to an Unprototyped Routine

This example differs from the previous one by the presence of an eyecatcher after the
call to bar in the caller's code and the code necessary to perform the default widening
rules required by ANSI.

struct s_tag {
 long a;
 float b;
 long c;

} x, y;
 long z;
 double q;

168 VisualAge C++ Programming Guide

Examples Using _Optlink

/* Actual Call */
y = bar(z, x, q);

 ...

/* callee */
struct s_tag bar(long lvar, struct s_tag aggr, float fvar)

 {
struct s_tag temp;

temp.a = lvar + aggr.a + 23;
temp.b = fvar - aggr.b;
temp.c = aggr.c

 return temp;
 }

Caller's code up until call:

FLD QWORD_PTR q ; Load lexically first floating-point
; parameter to be converted

SUB ESP, 8 ; Allocate space for the floating-point
 ; register parameter

PUSH x.c ; Push nonconforming parameters on
 PUSH x.b ; stack
 PUSH x.a ;

MOV EAX, z ; Load lexically first
 ; conforming parameter
 ; into EAX

SUB ESP, 4 ; Allocate stack space for the first
; general-purpose register parameter.

PUSH addr y ; Push hidden first parameter (address of
 ; return space)
 CALL BAR
 TEST EAX, 00408000h ; Eyecatcher

ADD ESP, 28 ; Clean up parameters

 Chapter 10. Calling Conventions 169

_System Calling Convention

Stack Just After Call General-Purpose Registers Just After Call

 │ │ ┌─────────┬────┬────┐
│ caller's Local │ EAX │ z │

 ├─────────────────────┤ ├─────────┼────┼────┤
 │ Two Blank │ EBX │ caller's EBX │

├─ ── ── ── ── ── ── ─┤ ├─────────┼────┼────┤
│ Dwords for q │ ECX │ Garbage │

 ├─────────────────────┤ ├─────────┼────┼────┤
│ x.c │ EDX │ Garbage │

 ├─────────────────────┤ ├─────────┼────┴────┤
│ x.b │ EDI │ caller's EDI │

 ├─────────────────────┤ ├─────────┼─────────┤
│ x.a │ ESI │ caller's ESI │

 ├─────────────────────┤ └─────────┴─────────┘
│ Blank Slot for z │

 ├─────────────────────┤
│ Hidden Ret Val Addr │ 80387 Register Set Just After Call

 ├─────────────────────┤
 │ caller's EIP │ ┌───────────────────┐
ESP─────► └─────────────────────┘ ST(7) │ Empty │
 ├───────────────────┤

ST(6) │ Empty │
 ├───────────────────┤

ST(5) │ Empty │
 ├───────────────────┤

ST(4) │ Empty │
 ├───────────────────┤

ST(3) │ Empty │
 ├───────────────────┤

ST(2) │ Empty │
 ├───────────────────┤

ST(1) │ Empty │
 ├───────────────────┤

ST(0) │ fvar [(float)q] │
 └───────────────────┘

_System Calling Convention

To use this linkage convention, you must use the _System keyword in the declaration
of the function or specify the /Ms option when you invoke the compiler.

Note: Because the VisualAge C++ library functions use the _Optlink convention, if
you use the /Ms option, you must include all appropriate library header files to ensure
the functions are called with the correct convention.

The following rules apply to the _System calling convention:

¹ All parameters are passed on the 80386 stack.

¹ The C parameter-passing convention is followed, where parameters are pushed
onto the stack in right-to-left order.

¹ The calling function is responsible for removing parameters from the stack.

¹ All parameters are doubleword (4-byte) aligned.

170 VisualAge C++ Programming Guide

Examples Using the _System Convention

¹ The size of the parameter list is passed in AL. If the parameter list is greater
than 255 doublewords, the value contained in AL is the 8 least significant bits of
the size. You can use the __parmdwords function (described in the C Library

Reference) to access the value of AL that was passed to the function.

Note: The __parmdwords function may not yield the correct value in the case of
compilers that do not follow the rule of passing the size of the parameter list in
AL. You can use the __parmdwords function with code compiled under IBM
VisualAge C++ Version 3.0 for OS/2 provided the code was compiled with the
/Gp+ option specified.

¹ All functions returning non-floating-point values pass a return value back to the
caller in EAX. Functions returning floating-point values use the floating-point
stack ST(0). Aggregate return values, such as structures, are passed as a hidden
parameter on the stack, and EAX points to them on return.

¹ All functions preserve the general purpose registers of the caller, except for ECX,
EDX, and EAX.

¹ Structures passed by value are actually copied onto the stack, not passed by
reference.

¹ The floating-point stack is defined to be empty upon entry to a called function,
and has either a single item in ST(0) if there is a floating-point return, or is
empty if there is not a floating-point return.

¹ The direction flag must be clear upon entry to functions and clear on exit from
functions. The state of the other flags is ignored on entry to a function, and
undefined on exit.

¹ The compiler will not change the contents of the floating-point control register.
If you want to change the control register contents for a particular operation, save
the contents before making the changes and restore them after the operation.

Examples Using the _System Convention

The following examples are included for purposes of illustration and clarity only.
They have not been optimized. The examples assume that you are familiar with
programming in assembler. Note that, in the examples, the stack grows toward the
bottom of the page, and ESP always points to the top of the stack.

For the call

m = func(a,b,c);

a, b, and c are 32-bit integers and func has two local variables, x and y (both 32-bit
integers).

 Chapter 10. Calling Conventions 171

Examples Using the _System Convention

The stack for the call to func would look like this:

 Stack
 │ │
 ├────────────────────────┤ Higher Memory
 │ c │
 ├────────────────────────┤
 │ b │
 ├────────────────────────┤
 │ a │
 ├────────────────────────┤
 │ caller's EIP │
 ├────────────────────────┤
 │ caller's EBP │
 EBP ───────► ├────────────────────────┤
 │ x │
 ├────────────────────────┤
 │ y │
 ├────────────────────────┤ ◄─┐
 │ Saved EDI │ │

├────────────────────────┤ │ These would only be
│ Saved ESI │ │ pushed if they were
├────────────────────────┤ │ used in this function.

 │ Saved EBX │ │
 ESP ───────► ├────────────────────────┤ ◄─┘
 │ │ Lower Memory

The instructions used to create this activation record on the stack look like this on the
calling side:

 PUSH c
 PUSH b
 PUSH c
 MOV AL, 3H
 CALL func
 .
 .

ADD ESP, 12 ; Cleaning up the parameters
 .
 .
 MOV m, EAX
 .
 .

Note: the MOV AL,3H instruction is not present unless the /Gp option is on.

172 VisualAge C++ Programming Guide

Examples Using the _System Convention

For the callee, the code looks like this:

func PROC
 PUSH EBP

MOV EBP, ESP ; Allocating 8 bytes of storage
SUB ESP, 8 ; for two local variables.
PUSH EDI ; These would only be
PUSH ESI ; pushed if they were used
PUSH EBX ; in this function.

 .
 .

MOV EAX, [EBP - 8] ; Load y into EAX
MOV EBX, [EBP + 12] ; Load b into EBX

 .
 .

XOR EAX, EAX ; Zero the return value
POP EBX ; Restore the saved registers

 POP ESI
 POP EDI

LEAVE ; Equivalent to MOV ESP, EBP
 ; POP EBP
 RET
func ENDP

The saved register set is EBX, ESI, and EDI. The other registers (EAX, ECX, and
EDX) can have their contents changed by a called routine.

Floating-point results are returned in ST(0), which is the top of the floating-point
register stack. If there is no numeric coprocessor installed in the system, the OS/2
operating system emulates the coprocessor.

Floating-point parameters are pushed on the 80386 stack.

Under some circumstances, the compiler will not use EBP to access automatic and
parameter values, thus increasing the efficiency of the application. Whether it is used
or not, EBP will not change across the call.

When passing structures as value parameters, the compiler generates code to copy the
structure on to the 80386 stack. If the size of the structure is larger than an 80386
page size (4K), the compiler generates code to copy the structure backward. (That is,
the last byte in the structure is the first to be copied.) This operation ensures that the
OS/2 guard page method of stack growth will function properly in the presence of
large structures being passed by value. Refer to the User's Guide for more
information on stack growth.

 Chapter 10. Calling Conventions 173

Examples Using the _System Convention

Structures are not returned on the stack. The caller pushes the address where the
returned structure is to be placed as a lexically first hidden parameter. A function
that returns a structure must be aware that all parameters are 4 bytes farther away
from EBP than they would be if no structure return were involved. The address of
the returned structure is returned in EAX.

In the most common case, where the return from a function is simply assigned to a
variable, the compiler merely pushes the address of the variable as the hidden
parameter.2 For example:

struct test_tag
 {
 int a;
 int some_array[100];
 } test_struct;

struct test_tag test_function(struct test_tag test_parm)
{

test_parm.a = 42;
 return test_parm;
}

int main(void)
{

test_struct = test_function(test_struct);
 return test_struct.a;
}

2 Note that when the /Gp switch is on and this function calls the __parmdwords function, the value of AL is stored in a temporary variable in its
prolog. This is done to ensure that the value cannot change before the call to __parmdwords.

174 VisualAge C++ Programming Guide

Examples Using the _System Convention

The code generated for this program would be:

test_function PROC
 PUSH ESI
 PUSH EDI

MOV DWORD PTR [ESP+0cH], 02aH ; test_parm.a
MOV EAX, [ESP+08H] ; Get the target of the return value

 MOV EDI, EAX ; Value
 LEA ESI, [ESP+0cH] ; test_parm
 MOV ECX, 065H
 REP MOVSD
 POP EDI
 POP ESI
 RET
test_function ENDP

 PUBLIC main
main PROC
 PUSH EBP
 MOV EBP, ESP
 PUSH ESI
 PUSH EDI

SUB ESP, 0194H ; Adjust the stack pointer
 MOV EDI, ESP

MOV ESI, OFFSET FLAT: test_struct
 MOV ECX, 065H

REP MOVSD ; Copy the parameter
 MOV AL, 065H

PUSH OFFSET FLAT: test_struct ; Push the address of the target
 CALL test_function
 ADD ESP, 0198H

 Chapter 10. Calling Conventions 175

Examples Using the _System Convention

MOV EAX, DWORD PTR test_struct ; Take care of the return
 POP EDI ; from main
 POP ESI
 LEAVE
 RET
main ENDP

Note: The MOV AL, 065H is not present unless the /Gp switch is on.

In a slightly different case, where only one field of the structure is used by the caller
(as shown in the following example), the compiler allocates sufficient temporary
storage in the caller's local storage area on the stack to contain a copy of the
structure. The address of this temporary storage will be pushed as the target for the
return value. Once the call is completed, the desired member of the structure can be
accessed as an offset from EAX, as can be seen in the code generated for the
example:

struct test_tag
 {
 int a;
 int some_array[100];
 } test_struct;

struct test_tag test_function(struct test_tag test_parm)
{

test_parm.a = 42;
 return test_parm;
}

int main(void)
{
 return test_function(test_struct).a;
}

176 VisualAge C++ Programming Guide

Examples Using the _System Convention

The code generated for this example would be:

 PUBLIC main
main PROC
 PUSH EBP
 MOV EBP, ESP

SUB ESP, 0194H ; Allocate space for compiler-generated
 PUSH ESI ; temporary variable
 PUSH EDI
 SUB ESP, 0194H
 MOV EDI, ESP

MOV ESI, OFFSET FLAT: test_struct
 MOV ECX, 065H
 REP MOVSD
 LEA EAX, [ESP+019cH]
 PUSH EAX
 MOV AL, 065H
 CALL test_function
 ADD ESP, 0198H

MOV EAX, [EAX] ; Note the convenience of having the
POP EDI ; address of the returned structure

 POP ESI ; in EAX
 LEAVE
 RET
main ENDP

Again, the MOV AL,3H instruction is not present unless the /Gp option is on.

 Chapter 10. Calling Conventions 177

Examples Using the _Pascal Convention

_Pascal and _Far32_Pascal Calling Conventions

VisualAge C++ compiler provides both a _Pascal and a _Far32 _Pascal convention.
The _Far32 _Pascal convention allows you to make calls between different code
segments in code that runs at ring 0, and is only valid when the /Gr+ option is
specified. The _Pascal conventions are most commonly used to create virtual device
drivers, as described in Chapter 11, “Developing Virtual Device Drivers” on
page 187.

Notes:

1. These _Pascal linkage conventions should not be confused with the 16-bit
_Far16 _Pascal convention which is provided for 16-bit compatibility.

2. The _Far32 _Pascal convention is not available in C++ programs.

The _Pascal and _Far32 _Pascal conventions follow the same rules as the _System

convention with these exceptions:

¹ Function names are converted to uppercase.

¹ Parameters are pushed in a left-to-right lexical order.

¹ The callee is responsible for cleaning up the parameters.

¹ Variable argument functions are not supported.

¹ The size of the parameter list is not passed in AL.

Important: The compiler does not convert 16-bit or 32-bit _Pascal function names
to uppercase. The case of the function name in the call must match the case in the
function prototype. Function names are, however, converted to uppercase in the
object module to allow calls from assembler.

Examples Using the _Pascal Convention

The following examples are included for purposes of illustration and clarity only and
have not been optimized. The examples assume that you are familiar with
programming in assembler. Note that, in the examples, the stack grows toward the
bottom of the page, and ESP always points to the top of the stack.

For the call

m = func(a,b,c);

a, b, and c are 32-bit integers, and func has two local variables, x and y (both 32-bit
integers).

178 VisualAge C++ Programming Guide

Examples Using the _Pascal Convention

The stack for the call to func would look like this:

 Stack
 │ │
 ├────────────────────────┤ Higher Memory
 │ a │
 ├────────────────────────┤
 │ b │
 ├────────────────────────┤
 │ c │
 ├────────────────────────┤
 │ caller's EIP │
 ├────────────────────────┤
 │ caller's EBP │
 EBP ───────► ├────────────────────────┤
 │ x │
 ├────────────────────────┤
 │ y │
 ├────────────────────────┤ ◄─┐
 │ Saved EDI │ │

├────────────────────────┤ │ These would only be
│ Saved ESI │ │ pushed if they were
├────────────────────────┤ │ used in this function.

 │ Saved EBX │ │
 ESP ───────► ├────────────────────────┤ ◄─┘
 │ │ Lower Memory

The instructions used to build this activation record on the stack look like this on the
calling side:

 PUSH a
 PUSH b
 PUSH c
 CALL FUNC
 .
 .
 .
 MOV m, EAX
 .
 .

 Chapter 10. Calling Conventions 179

Examples Using the _Pascal Convention

For the callee, the code looks like:

FUNC PROC
 PUSH EBP

MOV EBP, ESP ; Allocating 8 bytes of storage
SUB ESP, 8 ; for two local variables.
PUSH EDI ; These would only be
PUSH ESI ; pushed if they were used
PUSH EBX ; in this function.

 .
 .

MOV EAX, [EBP - 8] ; Load y into EAX
MOV EBX, [EBP + 12] ; Load b into EBX

 .
 .

XOR EAX, EAX ; Zero the return value
POP EBX ; Restore the saved registers

 POP ESI
 POP EDI

LEAVE ; Equivalent to MOV ESP, EBP
 ; POP EBP
 RET 0CH
FUNC ENDP

Like the _System calling convention, the saved register set is EBX, ESI, and EDI.
The other registers (EAX, ECX, and EDX) can have their contents changed by a
called routine.

Floating-point results are returned in ST(0). If there is no numeric coprocessor
installed in the system, the OS/2 operating system emulates the coprocessor.
Floating-point parameters are pushed on the 80386 stack.

_Far32 _Pascal function pointers are returned with the offset in EAX and the
segment in DX.

In some circumstances, the compiler will not use EBP to access automatic and
parameter values, thus increasing the efficiency of the application. Whether it is used
or not, EBP will not change across the call.

180 VisualAge C++ Programming Guide

Examples Using the _Pascal Convention

Structures are handled in the same way as they are under the _System calling
convention. When passing structures as value parameters, the compiler generates
code to copy the structure on to the 80386 stack. If the size of the structure is larger
than an 80386 page size (4K), the compiler generates code to copy the structure
backward. (That is, the last byte in the structure is the first to be copied.)

Structures are not returned on the stack. The caller pushes the address where the
returned structure is to be placed as a lexically first hidden parameter. A function
that returns a structure must be aware that all parameters are 4 bytes farther away
from EBP than they would be if no structure return were involved. The address of
the returned structure is returned in EAX.

In the most common case, where the return from a function is simply assigned to a
variable, the compiler merely pushes the address of the variable as the hidden
parameter. For example:

struct test_tag {
 int a;
 int some_array[100];
 } test_struct;

struct test_tag test_function(struct test_tag test_parm)
 {

test_parm.a = 42;
 return test_parm;
 }

 int main(void)
 {

test_struct = test_function(test_struct);
 return test_struct.a;
 }

The code generated for the above example would be:

 Chapter 10. Calling Conventions 181

Examples Using the _Pascal Convention

TEST_FUNCTION PROC
 PUSH EBP
 MOV EBP, ESP
 PUSH ESI
 PUSH EDI

MOV DWORD PTR [ESP+0cH], 02aH ; test_parm.a
MOV EAX, [EBP+08H] ; Get the target of the return value

 MOV EDI, EAX ; Value
 LEA ESI, [EBP+0cH] ; test_parm
 MOV ECX, 065H
 REP MOVSD
 POP EDI
 POP ESI
 LEAVE
 RET 198H
TEST_FUNCTION ENDP

 PUBLIC main
main PROC
 PUSH EBP
 MOV EBP, ESP
 PUSH ESI
 PUSH EDI

SUB ESP, 0194H ; Adjust the stack pointer
 MOV EDI, ESP

MOV ESI, OFFSET FLAT: test_struct
 MOV ECX, 065H

REP MOVSD ; Copy the parameter
PUSH OFFSET FLAT: test_struct ; Push the address of the target

 CALL TEST_FUNCTION

182 VisualAge C++ Programming Guide

Examples Using the _Pascal Convention

MOV EAX, DWORD PTR test_struct ; Take care of the return
 POP EDI ; from main
 POP ESI
 LEAVE
 RET
main ENDP

In a slightly different case, where only one field of the structure is used by the caller
(as shown in the following example), the compiler allocates sufficient temporary
storage in the caller's local storage area on the stack to contain a copy of the
structure. The address of this temporary storage will be pushed as the target for the
return value. Once the call is completed, the desired member of the structure can be
accessed as an offset from EAX, as can be seen in the code generated for the
example:

struct test_tag {
 int a;
 int some_array[100];
 } test_struct;

struct test_tag test_function(struct test_tag test_parm)
 {

test_parm.a = 42;
 return test_parm;
 }

 int main(void)
 {
 return test_function(test_struct).a;
 }

The code generated for the example would be:

 Chapter 10. Calling Conventions 183

__stdcallCalling Convention

 PUBLIC main
main PROC
 PUSH EBP
 MOV EBP, ESP

SUB ESP, 0194H ; Allocate space for compiler-generated
 PUSH ESI ; temporary variable
 PUSH EDI
 SUB ESP, 0194H
 MOV EDI, ESP

MOV ESI, OFFSET FLAT: test_struct
 MOV ECX, 065H
 REP MOVSD
 LEA EAX, [ESP+0194H]
 PUSH EAX
 CALL TEST_FUNCTION

MOV EAX, [EAX] ; Note the convenience of having the
POP EDI ; address of the returned structure

 POP ESI ; in EAX
 LEAVE
 RET
main ENDP

__stdcall Calling Convention

The language details of these calling conventions are the same as for all other calling
conventions. __stdcall has the additional restriction that an unprototyped __stdcall

function with a variable number of arguments will not work.

To use this linkage convention, use the __stdcall keyword in the declaration of the
function. You can make __stdcall the default linkage by specifying the /Mt option
when you invoke the linker. There is no #pragma linkage for this convention.

The following rules apply to the __stdcall calling convention:

¹ All parameters are passed on the stack.

¹ The parameters are pushed onto the stack in a lexical right-to-left order.

¹ The called function removes the parameters from the stack.

184 VisualAge C++ Programming Guide

__cdeclCalling Convention

¹ Floating point values are returned in ST(0) All functions returning non-floating
point values return them in EAX, except for the special case of returning
aggregates less than or equal to four bytes in size. For functions that return
aggregates less than or equal to four bytes in size, the values are returned as
follows:

Size of Aggregate Value Returned in

4 bytes EAX
3 bytes EAX
2 bytes AX
1 byte AL

For functions that return aggregates greater than four bytes in size, the address to
place the return values is passed as a hidden parameter, and the addresss is
passed back in EAX.

¹ Note that prototyped variable argument functions with __stdcall linkage are
silently converted by the compiler to __cdecl linkage. Unprototyped functions
may be given __stdcall linkage.

¹ Function names are decorated with an underscore prefix, and a suffix which
consists of an at (@), followed by the number of bytes of parameters (in
decimal). Parameters of less than four bytes are rounded up to four bytes.
Structure sizes are also rounded up to a multiple of four bytes. For example, a
function fred prototyped as follows:

int fred(int, int, short);

would appear as:

 _fred@12

in the object module.

Note: When building export or import lists in DEF files, the decorated version of the
name should be used. This is automatically handled when using #pragma export
and #pragma import.

__cdecl Calling Convention

The __cdecl linkage is very similar to the OS/2 _system linkage convention. All
general purpose registers are preserved except for EAX, ECX, and EDX. Note that,
unlike the OS/2 system linkage, the number of dwords of parameters is not passed in
AL. The parmdwords builtin function does not apply to __cdecl.

To use this linkage convention, use the __cdecl keyword in the declaration of the
function. You can make __cdecl the default linkage by specifying the /Mc option
when you invoke the linker. There is no #pragma linkage for this convention.

 Chapter 10. Calling Conventions 185

__cdeclCalling Convention

The following rules apply to the __cdecl calling convention:

¹ All parameters are passed on the stack.

¹ The parameters are pushed onto the stack in a lexical right-to-left order.

¹ The calling function removes the parameters from the stack.

¹ Floating point values are returned in ST(0). All functions returning non-floating
point values return them in EAX, except for the special case of returning
aggregates less than or equal to four bytes in size. For functions that return
aggregates less than or equal to four bytes in size, the values are returned as
follows:

Size of Aggregate Value Returned in

4 bytes EAX
3 bytes EAX
2 bytes AX
1 byte AL

For functions that return aggregates greater than four bytes in size, the address to
place the return values is passed as a hidden paramter, and the addresss is passed
back in EAX.

¹ Function names are decorated with an underscore prefix when they appear in
object modules. For example, a function named fred in the source program will
appear as _fred in the object.

Note: When building export or import lists in DEF files, the decorated version of the
name should be used. This is automatically handled when using #pragma export
and #pragma import.

186 VisualAge C++ Programming Guide

Creating Ring Zero Code

11 Developing Virtual Device Drivers

The VisualAge C++ compiler provides a number of features specifically for virtual
device driver development. This chapter describes those features and discusses the
issues you should be aware of when developing virtual device drivers. Note that
support for developing virtual device drivers is available for C programs only.

Virtual device drivers (VDDs) provide virtual hardware support for DOS and DOS
applications. They emulate input/output port and device memory operations. To
achieve a certain level of hardware independence, a virtual device driver usually
communicates with a physical device driver to interact with hardware. For example,
the OS/2 operating system provides both virtual and physical device drivers for the
mouse and keyboard.

User-supplied virtual device drivers simulate the hardware interfaces of an option
adapter or device, and are usually used to migrate existing DOS applications into the
OS/2 DOS environment.

A virtual device driver is essentially a DLL. It is responsible for presenting a virtual
copy of the hardware resource to the DOS session and for coordinating physical
access to that resource.

You may need to create a virtual device driver if multiple sessions must share access
to a device where the input and output is not based on file handles, or if the particular
device requires that interrupts be serviced within a short period of time.

Creating Code to Run at Ring Zero

Most object code runs at ring 3. However, some object code, such as that for virtual
device drivers and operating systems, must run at ring 0. To generate code to run at
ring 0, use the /Gr+ option. Note that to use /Gr+, you must also specify the /Rn
option and use the subsystem libraries.

When you use the /Gr+ option, the compiler keeps track of which storage references
are to the stack segment and which references are to the data segment, and ensures
that the generated code is correct for these operations. This tracking is necessary
because at ring 0, the stack segment and data segment may not be the same. (At ring
3, they are the same.)

 Copyright IBM Corp. 1992, 1995 187

Using VDD Calling Conventions

In some cases, the compiler cannot tell whether the reference is to the stack or data
segment. Usually the reason is that the control flow of the program allows for either
possibility, depending on which path through the program is taken at run time. For
this reason, when you take the address of a stack-based variable (such as a local
variable or parameter), you cannot safely pass the address to another function. In
addition, you cannot safely store a stack address and a static or external address in the
same variable, and subsequently de-reference the pointer created by the operation.

Whenever you take the address of a stack-based variable, the compiler generates a
warning message that the address might be used in an unsafe way. This message is
not generated if you specify /Gr-.

If your VDD contains any functions that are called from 16-bit physical device
drivers, you must compile them with the /Gv+ option to ensure the DS and ES
registers are handled correctly. These two registers contain the selector for a 16-bit
data segment. Using /Gv+ ensures that DS and ES are saved on entry to an external
function, set to the selector for DGROUP, and then restored on exit from the
function.

Note: When you use /Gv+, if you also use the intermediate code linker (with the
/Fw+ or /Ol+ option), only use the /Gu+ option if the functions affected by /Gv+ are
explicitly exported. If they are not exported, do not use the /Gu+ option. Because of
this restriction, using the intermediate code linker for this type of program may not
greatly improve the optimization of your code.

Using Virtual Device Driver Calling Conventions

If you are building a VDD in C, you must use 32-bit _Pascal or _Far32 _Pascal

calling conventions to call the Virtual Driver Help interfaces or communicate with
physical device drivers. These calling conventions are not supported for C++
programs. Within a VDD, you can use the _Optlink convention in most cases.
Private interfaces between physical and virtual device drivers can use any calling
convention provided both device drivers support it.

The _Far32 _Pascal calling convention is only available for code running at ring 0.
It allows you to make calls between code segments with different selectors. It also
allows your VDDs to communicate with physical device drivers.

You can specify the calling convention using either the _Pascal and _Far32 _Pascal

keywords. The description of the implementation of the _Pascal calling conventions
is in “_Pascal and _Far32_Pascal Calling Conventions” on page 178.

188 VisualAge C++ Programming Guide

_Far32 _Pascal Function Pointers

Using _Far32 _Pascal Function Pointers

VisualAge C++ compiler provides special 48-bit function pointers so you can make
indirect calls to 32-bit functions that use the _Far32 _Pascal convention. The
_Far32 _Pascal pointers are required to build VDDs and similar applications that run
at ring 0. For example, you would use 48-bit pointers to allow your VDD to
communicate with physical device drivers.

The _Far32 _Pascal pointers, like the _Far32 _Pascal calling convention, are only
supported when the /Gr+ option is specified.

The 48-bit pointer consists of 2 fields:

1. A 16-bit selector value which identifies the code segment.
2. A 32-bit offset value which identifies the function's location in the segment.

To declare a 48-bit pointer, use the _Far32 and _Pascal keywords in the pointer
declaration. For example:

void (* _Far32 _Pascal foo)(int);

declares foo to be a 48-bit pointer to a function with the _Far32 _Pascal convention
that takes an integer argument and does not return a value.

The only operations that can be performed on or with a _Far32 _Pascal pointer are:

¹ Calling the function.
¹ Assigning the pointer, which includes casting it to a 32-bit function pointer or to

an integer or unsigned type.
¹ Initializing the pointer, either statically or at runtime, with the address of a

_Far32 _Pascal or 32-bit function, or with an integer or unsigned value.
¹ Comparing two pointers for equality or inequality. Like all function pointers,

48-bit pointers cannot be compared using relational operators.
¹ Passing the pointer as a parameter or returning it from a function. 48-bit pointers

are passed in the same way as aggregates. The offset portion is returned in EAX
and the selector portion in DX.

If you assign an integer or unsigned value to a 48-bit pointer, the selector field of the
pointer is set to the default CODE32 segment, and the offset field is initialized to the
integer value being assigned. This type of assignment is not generally useful, because
you cannot know where a function will reside in a code segment, and because if your
code segment is CODE32, a 32-bit function pointer is sufficient.

Note: _Far32 _Pascal pointers cannot be directly converted to _Far16 pointers.

 Chapter 11. Developing Virtual Device Drivers 189

VDD Module Definition Files

Creating a Module Definition File

When you link your VDD, you must use a module definition (.DEF) file. The first
statement in the file must be

VIRTUAL DEVICE device_name

where device_name specifies the name of the VDD. The file cannot contain a NAME
statement.

Once you have created your device driver, you must place a DEVICE statement in your
CONFIG.SYS file to ensure it is treated as a device by the operating system.

For more details on .DEF file statements, see the User's Guide. For additional
information on writing and building device drivers, see the online Control Program

Reference.

190 VisualAge C++ Programming Guide

Calling 16-bit Code

12 Calling between 32-Bit and 16-Bit Code

If you have applications that depend on APIs that are only available as 16-bit code, or
if you have developed or purchased libraries of routines that are currently 16-bit code,
VisualAge C++ helps you protect that investment of time and money. Programmers
can continue using their existing 16-bit source code and any 16-bit libraries on which
their applications depend.

This chapter discusses how to:

¹ Call 16-bit code from your 32-bit VisualAge C++ programs

¹ Call 32-bit VisualAge C++ code from 16-bit code

¹ Pass data between 32-bit and 16-bit code.

¹ Share data between 32-bit and 16-bit code.

The conventions and methods described apply for both C and C++ programs.

Note: The VisualAge C++ compiler produces 32-bit code only. It does not produce
16-bit code.

Linking 32-bit and 16-bit Code

You can statically link between 32-bit and 16-bit code with the following restrictions:

¹ The main function must be 32-bit code.
¹ You cannot make any calls to 16-bit library functions in the 16-bit code.
¹ You must compile the 16-bit code with the /ND option (with a 16-bit compiler).

These restrictions do not apply when you dynamically link 32-bit code to 16-bit
DLLs.

Calling 16-bit Code

There are three 16-bit calling conventions supported by VisualAge C++ compiler:
_Far16_Cdecl, _Far16 _Fastcall, and _Far16 _Pascal.

The _Far16_Cdecl and _Far16 _Pascal conventions are equivalent to the cdecl and
pascal conventions used in other compilers. The _Far16 _Fastcall convention is
equivalent to the Microsoft C Version 6.0 fastcall convention.

 Copyright IBM Corp. 1992, 1995 191

Calling 16-bit Code

You can specify the calling convention for a function using keywords. For example,
the following fragment uses keywords to declare the function dave as a 16-bit
function using the _Far16 _Pascal calling convention:

void _Far16 _Pascal dave(short, long);

Similarities between the 16-Bit Conventions

The general rules for all three 16-bit calling conventions are:

¹ Types char, unsigned char, short, and unsigned short occupy a word on
the stack.

¹ Types long and unsigned long occupy a doubleword with the value's high-order
word pushed first.

¹ Types float, double, and long double are passed directly on the 80386 stack
as 32-, 64-, and 80-bit values respectively.

¹ char types are sign-extended when expanded to word or doubleword size;
unsigned char types are zero-extended on the stack.

¹ Far pointers are 32 bits and are pushed such that the segment value is pushed
first and the offset second.

¹ If the argument is a structure, the last word is pushed first and each successive
word is pushed until the first word.

¹ All arrays are passed by reference.

¹ BP, SI, and DI registers must be preserved across the call.

¹ Segment registers must be preserved across the call.

¹ Structures passed on the stack are rounded up in size to the next word boundary.

¹ The direction flag must be clear on entry and exit.

¹ Return values are passed back to the caller as follows:

– Types char, unsigned char, short, and unsigned short are returned in
AX.

– Types long and unsigned long are returned such that the high word is in
DX and the low word is in AX.

– Far pointers are returned such that the offset is in AX and the selector is in
DX.

192 VisualAge C++ Programming Guide

Calling 16-bit Code

Differences between the 16-Bit Conventions

¹ The order in which parameters are pushed on stack and their cleanup.

When you use the _Far16_Cdecl calling convention, the parameters are pushed
on the stack in a right-to-left order. The caller cleans up the parameters on the
stack. This is the opposite of the _Far16 _Pascal and _Far16 _Fastcall

conventions. When you use the _Far16 _Pascal convention, the parameters are
pushed on the stack from left to right, and the callee (the function being called)
cleans up the stack (usually by using a RET nn where nn is the number of bytes
in the parameter list).

¹ The number of registers which can take parameters.

The _Far16 _Fastcall convention differs from _Far16_Cdecl and _Far16

_Pascal in that it uses three registers that can take parameters, similar to
_Optlink. When you use _Far16 _Fastcall, registers are assigned to variable
types as follows:

– Types char and unsigned char are stored in AL, DL, and BL.
– Types short and unsigned short are stored in AX, DX, and BX.
– Types long and unsigned long are stored such that the high word is in DX

and the low word is in AX.
– All other types are passed on the stack.

Arguments are stored in the first available register allocated for their type. If all
registers for that type are filled, the argument is pushed on the 80386 stack from
left to right.

¹ The method of returning structures, unions, and floating point types.

For _Far16_Cdecl and _Far16 _Pascal, all three types are returned with the
address returned like a far pointer; that is, the value is in storage. The _Far16

_Pascal convention passes a hidden parameter, while _Far16_Cdecl has a static
area. This means that the _Far16_Cdecl convention is nonreentrant, and should
not be used in multithread programs. See “Return Values from 16-Bit Calls” on
page 196 for more details on how values are returned from 16-bit calls.

When you use the _Far16 _Fastcall convention, structures and unions are
returned with the address returned like a near pointer. Like _Far16 _Pascal,
_Far16 _Fastcall passes the address as a hidden parameter. Floating-point types
are returned in ST(0).

Specifying Stack Size

You can specify the stack size for 16-bit code using the #pragma stack16 directive.
For example, the following directive sets the stack size to 8192 bytes (8K):

 #pragma stack16(8192)

 Chapter 12. Calling between 32-Bit and 16-Bit Code 193

Restrictions on 16-Bit Calls

The default stack size is 4096 bytes (4K). This size is used for all 16-bit functions
called after the pragma directive until the end of the compilation unit, or until another
#pragma stack16 is encountered. The 16-bit stack is allocated from the 32-bit stack,
so you must ensure that the 32-bit stack is large enough for both your 32-bit and
16-bit code.

 For more information on #pragma stack16 and the linkage keywords, see the
online Language Reference.

Compiler Option for 16-Bit Declarations

The VisualAge C++ compiler also provides the /Gt compiler option to enable data to
be shared between 32-bit and 16-bit code. When you compile a program with /Gt+,
an implicit #pragma seg16 directive is performed for all variable declarations.
Pointers are not implicitly qualified with _Seg16; you must qualify them if desired.

The /Gt+ option also defines special versions of the malloc family of functions that
return memory that can be safely used by 16-bit code. When /Gt+ is specified, all
calls to calloc, malloc, realloc, and free are mapped to _tcalloc, _tmalloc,
_trealloc, and _tfree respectively.

These functions work exactly like the original functions, but the memory allocated or
freed will not cross 64K boundaries. The objects declared can be used in 16-bit
programs. This memory is also called tiled memory and is limited to 512M per
process.

Note: When you use the /Gt+ option, data items larger than 64K in size will be
aligned on 64K boundaries, but will also cross 64K boundaries.

Restrictions on 16-Bit Calls and Callbacks

¹ The compiler ensures that no parameters or automatic variables of a function
calling 16-bit code cross a 64K boundary. Any parameters or automatic variables
of functions that do not call 16-bit code may cross 64K boundaries. Passing the
address of the parameters or automatic variables to functions that pass them on to
16-bit code will result in an unreliable program.

To solve this problem, copy the value passed into an automatic variable in the
function that calls the 16-bit code. This automatic variable will not cross a 64K
boundary.

¹ Memory returned by _alloca will not be tiled. If a function contains a call to
_alloca, it should not also call 16-bit code, because parameters and automatic
variables may then cross 64K boundaries.

¹ A 16-bit program cannot pass structures by value to a 32-bit callback function.
The callback function cannot return structures by value to the 16-bit program that
called it.

194 VisualAge C++ Programming Guide

Example of Calling a 16-Bit Program

¹ The parameter area of the callback function cannot be larger than 120 bytes.

¹ Callback functions that take a variable number of arguments are not supported.

¹ Calling 16-bit code that takes a variable number of arguments is not supported.

Example of Calling a 16-Bit Program

The sample program SAMPLE04 shows how to call 16-bit code from a 32-bit
program, and also how to call back to a 32-bit function from a 16-bit routine. The
16-bit code is placed in two DLLs, one of which is bound to the 32-bit program at
load time by using IMPLIB to build an import library. The other is bound at run
time using OS/2 APIs. When the program is run, it prints a stanza from a poem.

Although the source for the 16-bit routines is included in SAMPLE04 for
demonstration purposes, the mechanisms used to call the routines can also be applied
when the 16-bit source is not available.

Important: To compile, link, and run this example, you must have the IBM C/2 or
Microsoft C Version 6.0 16-bit compiler installed, and its main directory must be
included in the PATH statement of your CONFIG.SYS file.

The files for the sample program are:

SAMPLE04.C The source file for the 32-bit program

SAMPLE04.H The user include file

SAMPLE04.DEF The module definition file for the 32-bit program

SAMP04A.C The source file for the first 16-bit DLL (bound at load time)

SAMP04A.DEF The module definition file for the first 16-bit DLL.

SAMP04B.C The source file for the second 16-bit DLL (bound at run time)

SAMP04B.DEF The module definition file for the second 16-bit DLL.

 Chapter 12. Calling between 32-Bit and 16-Bit Code 195

Return Values from 16-Bit Calls

The 32-bit main program (SAMPLE04.C):

¹ Makes direct calls to the 16-bit functions plugh1 and plugh2, which are both
defined in the 16-bit DLL bound at load time (the source for which is
SAMP04A.C).

¹ Demonstrates a callback function. The 32-bit user function xyzzy is passed to
the 16-bit plugh3 routine (defined in SAMP04A.C) with the intent that the 16-bit
routine will then call the user function. The xyzzy function is declared using a
16-bit calling convention and is called from the 16-bit DLL, but it is run as a
32-bit function.

¹ Uses OS/2 APIs to load the runtime DLL (the source for which is SAMP04B.C)
and query the address of the function plugh4. The program then calls plugh4
using the function pointer returned by the API.

If you installed the Sample programs, you will find the SAMPLE04 project in the
VisualAge C++ Samples folder. For information on how to build and debug a
project, see the User's Guide.

Alternatively, if you wish to compile, link, and run the sample from the command
line, you will find a readme file with instructions. in the
\IBMCPP\SAMPLES\COMPILER\SAMPLE04 directory along with the files needed which
include two makefiles that build the sample. One makefile for static linking and one
for dynamic linking.

Return Values from 16-Bit Calls

The following examples demonstrate how the VisualAge C++ compiler expects
values to be returned from calls to 16-bit programs.

Note: This is the same way that the IBM C/2 and Microsoft C Version 6.0
compilers return values.

 ¹ char cdecl myfunc(double,float,struct x);
char pascal myfunc(double,float,struct x);
char fastcall myfunc(double,float,struct x);

unsigned char cdecl myfunc(double,float,struct x);
unsigned char pascal myfunc(double,float,struct x);
unsigned char fastcall myfunc(double,float,struct x);

The returned value is placed in AL.

196 VisualAge C++ Programming Guide

Return Values from 16-Bit Calls

 ¹ short cdecl myfunc(double,float,struct x);
short pascal myfunc(double,float,struct x);
short fastcall myfunc(double,float,struct x);

The returned value is placed in AX.

 ¹ long cdecl myfunc(double,float,struct x);
long pascal myfunc(double,float,struct x);
long fastcall myfunc(double,float,struct x);

The high word is in DX, and the low word is in AX.

 ¹ float cdecl myfunc(double, float, struct x);
double cdecl myfunc(double, float, struct x);
long double cdecl myfunc(double, float, struct x);

The compiler does not provide a hidden parameter, but rather places the return
value in an external static variable __fac, which is defined as a QWORD. On
return, DX contains the selector and AX contains the offset of __fac.

For functions with type long double cdecl, the returned value is placed in
ST(0).

 ¹ float pascal myfunc(double,float,struct x);
double pascal myfunc(double,float,struct x);
long double pascal myfunc(double,float,struct x);

The compiler reserves space in automatic storage for the return value and pushes
(last) a pointer to this area (offset only, SS is always assumed). The callee stores
the return value in this area and returns the offset of this area in AX and returns
SS in DX.

 ¹ float fastcall myfunc(double,float,struct x);
double fastcall myfunc(double,float,struct x);
long double fastcall myfunc(double,float,struct x);

The returned value is placed in ST(0).

 ¹ char far * cdecl myfunc(double,float,struct x);
char far * pascal myfunc(double,float,struct x)
char far * fastcall myfunc(double,float,struct x)

Far pointers are returned such that the offset is in AX and the selector is in DX.

 ¹ struct_20_bytes cdecl myfunc(double,float,struct x)

The compiler reserves sizeof(struct_20_bytes) in uninitialized static (BSS)
for the callee. No hidden parameter is passed; the callee moves the return
structure into this static reserved area and returns the offset of the structure in
AX and the selector in DX.

 Chapter 12. Calling between 32-Bit and 16-Bit Code 197

Callbacks from 16-Bit Code

 ¹ struct_20_bytes pascal myfunc(double,float,struct x)
struct_20_bytes fastcall myfunc(double,float,struct x)

The compiler reserves space for the return value in the caller's automatic storage
and pushes the address of this area as a near pointer. SS will be assumed as the
selector. This parameter is pushed last as a hidden parameter. The offset of the
reserved space is returned in AX, and the selector (SS) is returned in DX.

 ¹ struct_4_bytes cdecl myfunc(double,float,struct x)
struct_4_bytes fastcall myfunc(double,float,struct x)

The compiler returns the contents of the structure in AX and DX. AX contains
the lower 2 bytes, and DX the higher 2 bytes.

– If the structure is packed and its size is 1 byte, AL is used.
– If the structure's size is 2 bytes, AX is used.
– If the structure is packed and its size is 3 bytes, space is reserved in the data

segment, the offset is returned in AX, and the selector is returned in DX.

 ¹ struct_4_bytes pascal myfunc(double,float,struct x)

The compiler reserves space for the return value in the caller's automatic storage
and pushes the address of this area as a near pointer. SS will be assumed as the
selector. This parameter is pushed last as a hidden parameter. The offset of the
reserved space is returned in AX, and the selector (SS) is returned in DX.

 ¹ char cdecl myfunc(double,float,struct x)
char pascal myfunc(double,float,struct x)
char fastcall myfunc(double,float,struct x)

unsigned char cdecl myfunc(double,float,struct x)
unsigned char pascal myfunc(double,float,struct x)
unsigned char fastcall myfunc(double,float,struct x)

The returned value is placed in AL.

Calling Back to 32-bit Code from 16-bit Code

Some 16-bit applications require that calling applications register callback functions.
For example, IBM Communications Manager requires callback functions to handle
some events. When you call these 16-bit applications from 32-bit code, you can pass
a pointer to a 32-bit function that will act as the callback function.

The 32-bit callback function must use the _Far16_Cdecl or _Far16 _Pascal calling
convention. The _Far16 _Fastcall convention is not supported for callback
functions. All pointer parameters must be qualified with the _Seg16 type qualifier.

198 VisualAge C++ Programming Guide

Passing Data between 16-bit and 32-bit Code

The VisualAge C++ compiler performs all necessary changes from the 16-bit to the
32-bit environment on entry to the callback function, and from 32-bit to 16-bit on
exit.

Passing Data between 16-bit and 32-bit Code

If a structure will be referenced in both 32-bit and 16-bit code and contains bit-fields
or members of type int or enum, you may have to rewrite the structure to ensure that
all members align properly.

int

To ensure all integers map the same way, change your integer declarations to use
short for 2-byte integers and long for 4-byte integers.

long double

To use your IBM C/2 long double under VisualAge C++ you must declare it as
double.

If you wish to use Microsoft C Version 6.0 long double data under VisualAge C++,
you must recompile it on the Microsoft C Version 6.0 compiler as double first, and
place into into a struct to pad out to 128 bits. Although, VisualAge C++ and
Microsoft C Version 6.0 both store long double as 80 bit real, VisualAge C++
stores it in a 16 byte (128 bit) field.

enum

Use the /Su2 option to force enum variables to be 2 bytes in size. This will make
them compatible with 16-bit code.

The size of type enum differs between compilers. For example, the IBM C/2 makes
all enum types 2 bytes, while the VisualAge C++ compiler defines the size as 1, 2, or
4 bytes, depending on the range of values the enumeration contains.

You can use the /Su option to force the VisualAge C++ compiler to make the enum
type 1,2, or 4 bytes, or to use the SAA rules that make all enum types the size of the
smallest integral type that can contain all variables.

bit fields

VisualAge C++ and 16-bit compilers use entirely different algorithms for packing bit
fields. In general, if the bit fields are packed "tightly", they will be compatible.
"Tightly" means that there is no padding introduced by the compiler. IBM C/2 and
Microsoft C Version 6.0 use the type specifier for the bit field member to determine
the size of the bit field area. VisualAge C++ allocates the minimum number of bytes
possible.

 Chapter 12. Calling between 32-Bit and 16-Bit Code 199

Passing Data between 16-bit and 32-bit Code

struct s1 { /* Compatible */ ▌1▐
int a : 4;
int b : 7;
int c : 5;

 };

struct s2 { /* Not compatible */ ▌2▐
int z : 9;
int y : 12;

 };

▌1▐ Because the type of the bit field members is int, Microsoft C Version 6.0 will
allocate 16 bits' (sizeof(int)) of space in the struct to store the bit field.

There are 16 bits of bit fields declared in the declaration of s1, so the bit fields are
packed tightly.

VisualAge C++ allocates precisely 2 bytes for the bit field., Microsoft C Version 6.0
and VisualAge C++ lay out the bit field in precisely the same way. Thus, they are
compatible.

▌2▐ There is not enough room in the 16-bit int to store the first two members of s2,
so Microsoft C Version 6.0 introduces 7 bits of padding to made the member z fill
out an entire int. It introduces an additional 4 bits of padding after y to fill up the
last byte. This bit field requires 4 bytes of storage using Microsoft C Version 6.0,
but only 3 bytes using VisualAge C++. Therefore, the padding introduced by the
compiler makes the bit fields incompatible.

Compilers utilizing 16-bit format align these types on 1 byte boundaries.

VisualAge C++ aligns members of type int, long, float, double, long double,
and pointer on 4-byte boundaries.

structure layout

Use /Sp1 or #pragma pack(1) on structures declarations that will be passed to or
from 16-bit code.

segmented pointers

If the pointer is passed to the function as a member of an aggregate or an array, you
must qualify it with _Seg16. The _Seg16 keyword tells the compiler to store the
pointer as a segmented pointer and not as a flat pointers used in 32-bit code. By
segmented, we mean a 16-bit segment selector and a 16-bit offset. The _Seg16

keyword is also required if you are using two or more levels of indirection (for
example, a pointer to a pointer).

If the pointer is passed directly as a parameter, the compiler automatically converts it
to a 16-bit pointer and the _Seg16 keyword is not required. For example, the
declaration

200 VisualAge C++ Programming Guide

Declaring Pointers with _Seg16.

void _Far16 _cdecl foo(char *);

is equivalent to

void _Far16 _cdecl foo(char * _Seg16);

It is good programming style to explicitly declare pointer parameters in 16-bit
function prototypes as being _Seg16.

If your pointers are used primarily as parameters to 16-bit functions and are not used
extensively in your 32-bit code, it may be advantageous to declare them with _Seg16.

Use the _Seg16 qualifier only when necessary. Because of the conversions that are
performed whenever a _Seg16 pointer is used in 32-bit code, unnecessary use of
segmented pointers can cause a noticeable degradation in the performance of your
application.

Sharing Data between 32-bit and 16-bit Code

Declaring Segmented Pointers

Use the _Seg16 type qualifier to declare external pointers that will be shared between
32-bit and 16-bit code, that is, that are declared in both.

For example:

char * _Seg16 p16;

directs the compiler to store the pointer as a segmented pointer (with a 16-bit selector
and 16-bit offset) that can be used directly by a 16-bit application. The _Seg16

keyword comes after the asterisk in the declaration, as required by ANSI syntax
rules.

When a _Seg16 pointer is used in 32-bit code, the VisualAge C++ compiler
automatically converts it to a flat 32-bit pointer when necessary.

char * _Seg16 p16;
char * _Seg16 * _Seg16 pp16;
char * p32;

p32=p16; ▌1▐ /* Automatic conversion */
pp16=p32; ▌2▐ / Here, too */
p16++; ▌3▐ /* Two conversions happen here */

▌1▐ p16 is converted from seg to flat before being stored in p32.

 Chapter 12. Calling between 32-Bit and 16-Bit Code 201

Declaring Objects Shared Objects

▌2▐ pp16 is converted to flat before being dereferenced, p32 is converted to seg
before being stored in *pp16.

▌3▐ p16 is converted to flat, is incremented, and then converted back to seg before
being stored back in p16.

Note: The _Seg16 keyword comes after the asterisk in the declaration, as required
by ANSI syntax rules. Programmers familiar with other compilers may be
accustomed to placing the far keyword in their declarations, but to the left of
the asterisk:

char far * x;

Because this syntax is contrary to ANSI binding rules, VisualAge C++
product does not support it.

Declaring Shared Objects

Because a 16-bit program cannot access a data item that is larger than 64K in size or
that spans a 64K boundary in memory, any data items that are to be shared between
16-bit and 32-bit programs must conform to these limits. Use the #pragma seg16
directive to ensure that shared data items do not cross 64K boundaries. In most
cases, you need only use this #pragma directive with items that are likely to cross
64K boundaries, such as aggregates, doubles, and long doubles.

You can use #pragma seg16 either with the data item directly or through a typedef.
The following code fragment shows both ways of using #pragma seg16:

struct family {
 long john;
 double carolynn;

char * _Seg16 geoff;
 long colleen;
 };

#pragma seg16(cat)
struct family cat; /* cat is qualified directly */

typedef struct family tom; ▌1▐
#pragma seg16(tom) ▌2▐

tom edna; /* edna is qualified using a typedef */ ▌3▐

Note: Using #pragma seg16 on variables of type struct family does not mean
that pointers inside the structure will automatically be qualified with _Seg16. If you
want the pointers to be qualified as such, you must declare them yourself.

202 VisualAge C++ Programming Guide

Declaring Objects Shared Objects

The #pragma seg16 directive can be used either before or after the variable or
typedef name is declared. In the case of the typedef, however, the #pragma must
be attached to the typedef name before that name is used in another declaration. For
example, in the preceding example, the lines marked ▌1▐ and ▌2▐ can appear in any
order, but both must appear before the line marked ▌3▐.

Because data objects used in 16-bit programs must be smaller than 64K, the #pragma
seg16 directive cannot be used on objects greater than 64K.

 Chapter 12. Calling between 32-Bit and 16-Bit Code 203

Declaring Objects Shared Objects

204 VisualAge C++ Programming Guide

Creating a Subsystem

13 Developing Subsystems

A subsystem is a collection of code and/or data that can be shared across processes
and that does not use the VisualAge C++ runtime environment. This chapter
describes how to create a subsystem.

A subsystem may have code and data segments that are shared by all processes, or it
may have separate segments for each process. If the subsystem is a DLL, there is
also an initialization routine associated with it.

By default, VisualAge C++ compiler creates a runtime environment for you using C
or C++ initializations, exception management, and termination. This environment
allows runtime functions to perform input/output and other services. However, many
applications require no runtime environment and must be written as subsystems. For
example, you will want to turn off the runtime environment support to:

¹ Develop Presentation Manager display or printer drivers

¹ Develop virtual device drivers

¹ Develop installable file system drivers

¹ Create DLLs with global initialization/termination and a single automatic data
segment that is shared by all processes. The initialization/termination function is
called once when the DLL is first loaded and once more when it is last freed.

Creating a Subsystem

To create a subsystem, you must first create one or more source files as you would
for any other program. Subsystems can be written in C or C++. No special file
extension is required.

When you do not use the runtime environment, you must provide your own
initialization functions, multithread support, exception handling, and termination
functions. You can use OS/2 APIs. For more information on the OS/2 APIs, see
the Control Program Guide and Reference and the PM Guide and Reference.

If you need to pass parameters to a subsystem executable module, the argv and argc
command-line parameters to main are supported. However, you cannot use the envp
parameter to main.

 Copyright IBM Corp. 1992, 1995 205

Subsystem Library Functions

Subsystem Library Functions

The libraries CPPON30.LIB and CPPON30.DLL are provided specifically for subsystem
development. Use CPPON30.LIB for static linking, and CPPON30.DLL for dynamic
linking. The import library CPPON30I.LIB is also provided for dynamic linking. You
can also use the CPPON30O.LIB library to create your own subsystem runtime DLL.
See “Creating Your Own Subsystem Runtime Library DLLs” on page 213 for more
information on creating subsystem runtime DLLs.

Those VisualAge C++ library functions that require a runtime environment cannot be
used in a subsystem. The subsystem libraries contain the library functions that do not
require a runtime environment, including the extensions that allow low-level I/O. No
other I/O functions are provided.

With the exception of the memory allocation functions (calloc, malloc, realloc,
and free), all of the functions in the subsystem libraries are reentrant.

Note: Although the low-level I/O functions defined in <io.h> are reentrant, you
should serialize access to these functions within each file. If you do not serialize the
access, you may get unexpected input or output.

The C++ runtime functions (new and delete) and exception handling functions
(throw, try and catch) are also available for subsystem development. None of the
Open Classes are are available for subsystem development.

There are three groups of functions that you can use in a subsystem:

1. The subsystem library functions listed below. These functions are available
whether or not you have optimization turned on (/O+).

2. Built-in instrinsic functions. These are listed in “Functions that Are Always
Inlined” on page 358. These functions are also available whether or not you
have optimization turned on.

3. Other intrinsic functions. These are listed in “Functions that Are Inlined when
Optimization Is On” on page 357. These functions are only available for use in
a subsystem if optimization is turned on.

206 VisualAge C++ Programming Guide

Subsystem Library Functions

The functions available in the subsystem libraries are:

Notes:

1. The subsystem library versions of these functions do not use the locale
information that the standard library versions use.

2. Note that atexit and _onexit are not provided.

3. You must write your own exception handler when using these functions in a
subsystem.

4. When you use these functions in a subsystem, \n will be translated to \r\n and
DosWrite will be used to write the contents of the buffer to stdout. There is no
serialization protection and no multibyte support. These functions use only the
default "C" locale information.

5. These functions are implemented as macros.

abs
access
atof
atoi1

atol1

bsearch
calloc
chmod
_chsize
_clear87
close
_control87
creat
_debug_calloc
_debug_free
_debug_heapmin
_debug_malloc
_debug_realloc
_debug_ucalloc
_debug_uheapmin
_debug_umalloc
div
_dump_allocated_delta
_dump_allocated
dup
dup2

__eof
exit2

_filelength
_fpreset
free
_heap_check
_heap_walk
_heapchk
_heapmin
_heapset
isatty
_itoa
labs
ldiv
longjmp3

lseek
_ltoa
malloc
memchr
memcmp
memcpy
memmove
memset
_mheap
_msize
open
printf4

qsort
read
realloc
realloc
_set_crt_msg_handle
setjmp3

_setmode
_sopen
sprintf4

sscanf4

_status87
strcat
strchr
strcmp
strcpy
strcspn
strdup
strncat
strncmp
strncpy
strpbrk
strrchr
strspn
strstr
strtol
strtoul

_tell
_uaddmem
_ucalloc
_uclose
_ucreate
_udefault
_udestroy
_udump_allocated
_udump_allocated_delta
_uheap_check
_uheap_walk
_uheapchk
_uheapmin
_uheapset
_ultoa
_umalloc
umask
_uopen
_ustats
va_arg5

va_end5

va_start5

vprintf4

vsprintf4

write

 Chapter 13. Developing Subsystems 207

Subsystem DLLs

Calling Conventions for Subsystem Functions

When creating a subsystem, you can use either the _System or _Optlink calling
convention for your functions. Any external functions that will be called from
programs not compiled by the VisualAge C++ compiler must use the _System

convention.

You can use the /Mp or /Ms options to specify the default calling convention for all
functions in a program, and you can use linkage keywords or the #pragma linkage
directive to specify the convention for individual functions.

Note: The #pragma linkage directive is supported for C programs only.

Building a Subsystem DLL

To create a subsystem DLL, follow the steps described in Chapter 6, “Building
Dynamic Link Libraries” on page 61. The steps are the same as for a DLL that uses
the runtime environment.

The one difference between the two types of DLLs is the _DLL_InitTerm function.
This function is the initialization and termination entry point for all DLLs. In the C
runtime environment, _DLL_InitTerm initializes and terminates the necessary
environment for the DLL, including storage, semaphores, and variables. The version
provided in the subsystem libraries defines the entry point for the DLL, but provides
no initialization or termination functions.

If your subsystem DLL requires any initialization or termination, you will need to
create your own _DLL_InitTerm function. Otherwise, you can use the default
version.

Writing Your Own Subsystem _DLL_InitTerm Function

The prototype for the _DLL_InitTerm function is:

unsigned long _System _DLL_InitTerm(unsigned long hModule,
unsigned long ulFlag);

If the value of the ulFlag parameter is 0, the DLL environment is initialized. If the
value of the ulFlag parameter is 1, the DLL environment is ended.

The hModule parameter is the module handle assigned by the operating system for
this DLL. The module handle can be used as a parameter to various OS/2 API calls.
For example, DosQueryModuleName can be used to return the fully qualified path
name of the DLL, which tells you where the DLL was loaded from.

The return code from _DLL_InitTerm tells the loader if the initialization or
termination was performed successfully. If the call was successful, _DLL_InitTerm

208 VisualAge C++ Programming Guide

Subsystem DLLs

returns a nonzero value. A return code of 0 indicates that the function failed. If a
failure is indicated, the loader will not load the program that is accessing the DLL.

Because it is called by the operating system loader, the _DLL_InitTerm function must
be declared as having the _System calling convention.

You do not need to call _CRT_init and _CRT_term in your _DLL_InitTerm function,
because there is no runtime environment to initialize or terminate. However, if you
are coding in C++, you do need to call __ctordtorInit at the beginning of
_DLL_InitTerm to correctly initialize static constructors and destructors, and
__ctordtorTerm at the end to correctly terminate them.

If you change your DLL at a later time to use the regular runtime libraries, you must
add calls to _CRT_init and _CRT_term, as described in “Writing Your Own
_DLL_InitTerm Function” on page 77, to ensure that the runtime environment is
correctly initialized.

Example of a Subsystem _DLL_InitTerm Function

The following figure shows the _DLL_InitTerm function for the sample program
SAMPLE05. If you installed the Sample programs, you will find the SAMPLE05 project
in the VisualAge C++ Samples folder. For information on how to build and debug a
project, see the User's Guide. Alternatively, if you wish to compile, link, and run the
sample from the command line, you will find a readme file with instructions. in the
\IBMCPP\SAMPLES\COMPILER\SAMPLE05 directory along with the files needed. This
_DLL_InitTerm function is included in the SAMPLE05.C source file. You could also
make your _DLL_InitTerm function a separate file. Note that this figure shows only
a fragment of SAMPLE05.C and not the entire source file.

 Chapter 13. Developing Subsystems 209

Subsystem DLLs

/* _DLL_InitTerm() - called by the loader for DLL initialization/termination */
/* This function must return a non-zero value if successful and a zero value */
/* if unsuccessful. */

unsigned long _DLL_InitTerm(unsigned long hModule, unsigned long ulFlag)
 {
 APIRET rc;

/* If ulFlag is zero then initialization is required: */
/* If the shared memory pointer is NULL then the DLL is being loaded */
/* for the first time so acquire the named shared storage for the */
/* process control structures. A linked list of process control */
/* structures will be maintained. Each time a new process loads this */
/* DLL, a new process control structure is created and it is inserted */
/* at the end of the list by calling DLLREGISTER. */

 /* */
/* If ulFlag is 1 then termination is required: */
/* Call DLLDEREGISTER which will remove the process control structure */
/* and free the shared memory block from its virtual address space. */

switch(ulFlag)
 {
 case 0:

if (!ulProcessCount)
 {
 _rmem_init();

/* Create the shared mutex semaphore. */

if ((rc = DosCreateMutexSem(SHARED_SEMAPHORE_NAME,
 &hmtxSharedSem,
 0,

FALSE)) != NO_ERROR)
 {

printf("DosCreateMutexSem rc = %lu\n", rc);
 return 0;
 }
 }

Figure 16 (Part 1 of 2). _DLL_InitTerm Function for SAMPLE05.

210 VisualAge C++ Programming Guide

Compiling Your Subsystem

/* Register the current process. */

if (DLLREGISTER())
 return 0;

 break;

 case 1:
/* De-register the current process. */

if (DLLDEREGISTER())
 return 0;

 _rmem_term();

 break;

 default:
 return 0;
 }

/* Indicate success. Non-zero means success!!! */

 return 1;
 }

Figure 16 (Part 2 of 2). _DLL_InitTerm Function for SAMPLE05.

Compiling Your Subsystem

To compile your source files into a subsystem, use the /Rn compiler option. When
you use this option, the compiler does not generate the external references that would
build an environment. The subsystem libraries are also specified in each object file to
be linked in at link time. The default compiler option is /Re, which creates an object
with a runtime environment.

If you are creating a subsystem DLL, you must use the /Ge- option in addition to
/Rn. You can use either static linking (/Gd-), which is the default, or dynamic
linking (/Gd+).

 Chapter 13. Developing Subsystems 211

Example of a Subsystem DLL

Restrictions When You Are Using Subsystems

If you are creating an executable module, the envp parameter to main is not
supported. However, the argv and argc parameters are available. See “Passing Data
to a Program” on page 13 for a description of envp under the runtime environment.

The low-level I/O functions allow you to perform some input and output operations.
You are responsible for the buffering and formatting of I/O.

Example of a Subsystem DLL

The sample program SAMPLE05 shows how to create a simple subsystem DLL and a
program to access it.

The DLL keeps a global count of the number of processes that access it, running
totals for each process that accesses the subsystem, and a grand total for all processes.
There are two external entry points for programs accessing the subsystem. The first
is DLLINCREMENT, which increments both the grand total and the total for the calling
process by the amount passed in. The second entry point is DLLSTATS, which prints
out statistics kept by the subsystem, including the grand total and the total for the
current process.

The grand total and the total for the process are stored in a single shared data
segment of the subsystem. Each process total is stored in its own data segment.

The files for the sample program are:

SAMPLE05.C The source file to create the DLL.

SAMPLE05.DEF The module definition file for the DLL.

SAMPLE05.H The user include file.

MAIN05.C The main program that accesses the subsystem.

MAIN05.DEF The module definition file for MAIN05.C.

If you installed the Sample programs, you will find the SAMPLE05 project in the
VisualAge C++ Samples folder. For information on how to build and debug a
project, see the User's Guide. Alternatively, if you wish to compile, link, and run the
sample from the command line, you will find a readme file with instructions. in the
\IBMCPP\SAMPLES\COMPILER\SAMPLE05 directory along with the files needed.

212 VisualAge C++ Programming Guide

Creating Subsystem Runtime Library DLLs

Creating Your Own Subsystem Runtime Library DLLs

If you are shipping your application to other users, you can use one of three methods
to make the VisualAge C++ subsystem library functions available to the users of your
application:

1. Statically bind every module to the library (.LIB) files.

This method increases the size of your modules and also slows the performance
because the DLL environment has to be initialized for each module.

2. Use the DLLRNAME utility to rename the VisualAge C++ subsystem library
DLLs.

You can then ship the renamed DLLs with your application. DLLRNAME is
described in the User's Guide.

3. Create your own runtime DLLs.

This method provides one common DLL environment for your entire application.
It also lets you apply changes to the runtime library without relinking your
application, meaning that if the VisualAge C++ DLLs change, you need only
rebuild your own DLL. In addition, you can tailor your runtime DLL to contain
only those functions you use, including your own.

To create your own subsystem runtime library, follow these steps:

1. Copy and rename the VisualAge C++ CPPON30.DEF file, for example to
mysdll.def. You must also change the DLL name on the LIBRARY line of the
.DEF file. CPPON30.DEF is installed in the LIB subdirectory under the main
VisualAge C++ installation directory.

2. Remove any functions that you do not use directly or indirectly (through other
functions) from your .DEF file (mysdll.def), including the STUB line. Do not
delete anything with the comment **** next to it; variables and functions
indicated by this comment are used by startup functions and are always required.

 Chapter 13. Developing Subsystems 213

Creating Subsystem Runtime Library DLLs

3. Create a source file for your DLL, for example, mysdll.c. If you are creating a
runtime library that contains only VisualAge C++ functions, create an empty
source file. If you are adding your own functions to the library, put the code for
them in this file.

4. Compile and link your DLL files. Use the /Ge- option to create a DLL and the
/Rn option to create a subsystem. For example:

icc /Ge- /Rn mysdll.c mysdll.def

5. Use the IMPLIB utility to create an import library for your DLL, as described in
“Using Your DLL” on page 72. For example:

IMPLIB /NOI mysdlli.lib mysdll.def

6. Use the ILIB utility to add the object modules that contain the initialization and
termination functions to your import library. These objects are needed by all
executable modules and DLLs, and are contained in CPPON30O.LIB for subsystem
programs. See the User's Guide for information on how to use ILIB.

Note: If you do not use the ILIB utility, you must ensure that all objects that
access your runtime DLL are statically linked to the appropriate object library.
The compile and link commands are described in the next step.

7. Compile your executable modules and other DLLs with the /Gn+ option to
exclude the default library information. For example:

icc /C /Gn+ /Ge+ /Rn myprog.c
icc /C /Gn+ /Ge- /Rn mydll.c

When you link your objects, specify your own import library. If you are using or
plan to use OS/2 APIs, specify OS2386.LIB also. For example:

ILINK myprog.obj mysdlli.lib OS2386.LIB
ILINK mydll.obj mysdlli.lib OS2386.LIB

To compile and link in one step, use the commands:

icc /Gn+ /Ge+ /Rn myprog.c mysdlli.lib OS2386.LIB
icc /Gn+ /Ge- /Rn mydll.c mysdlli.lib OS2386.LIB

214 VisualAge C++ Programming Guide

Creating Subsystem Runtime Library DLLs

Note: If you did not use the ILIB utility to add the initialization and termination
objects to your import library, when you link your modules, specify:

 a. CPPON30O.LIB
b. Your import library
c. OS2386.LIB (to allow you to use OS/2 APIs)
d. The linker option /NOD.

For example:

ILINK /NOD myprog.obj CPPON30O.LIB mysdlli.lib OS2386.LIB;
ILINK /NOD mydll.obj CPPON30O.LIB mysdlli.lib OS2386.LIB;

The /NOD option tells the linker to disregard the default libraries specified
in the object files and use only the libraries given on the command line.
If you are using icc to invoke the linker for you, the commands would
be:

icc /B"/NOD" /Rn myprog.c CPPON30O.LIB mysdlli.lib OS2386.LIB
icc /Ge- /B"/NOD" /Rn mydll.c CPPON30O.LIB mysdlli.lib OS2386.LIB

The linker then links the objects from the object library directly into your
executable module or DLL.

 Chapter 13. Developing Subsystems 215

Creating Subsystem Runtime Library DLLs

216 VisualAge C++ Programming Guide

14 Signal and OS/2 Exception Handling

VisualAge C++ product and the OS/2 operating system both have the capability to
detect and report runtime errors and abnormal conditions.

Abnormal conditions can be reported to you and handled in one of the following
ways:

1. Using VisualAge C++ signal handlers. Error handling by signals is defined by
the SAA and ANSI C standards and can be used in both C and C++ programs.

2. Using OS/2 exception handlers. The VisualAge C++ library provides a
C-language OS/2 exception handler, _Exception, to map OS/2 exceptions to C
signals and signal handlers. You can also create and use your own exception
handlers.

3. Using C++ exception handling constructs. These constructs belong to the C++
language definition and can only be used in C++ code. C++ exception
handling is described in detail in the Language Reference.

This chapter describes how to use signal handlers and OS/2 exception handlers alone
and in combination. Where appropriate, the interaction between C++ exception
handling and the handling of signals and OS/2 exceptions is also described. Both
signal and OS/2 exception handling are implemented in C++ as they are in C.

This chapter is only necessary for the advanced programming of exception handling
and not for simply debugging exception handling problems. You should use the
debugger to debug exception handling problems as complete notification and stack
tracing is available through the debugger. OS/2 exceptions and exception
handlers are also described in the Toolkit documentation.

Notes:

1. The terms signal, OS/2 exception, and C++ exception are not interchangeable. A
signal exists only within the C and C++ languages. An OS/2 exception is
generated by the operating system, and may be used by VisualAge C++ library to
generate a signal. A C++ exception exists only within the C++ language. In this
chapter, the term exception refers to an OS/2 exception unless otherwise
specified.

2. VisualAge C++ implements C++ exception handling using the OS/2 exception
handling facility.

 Copyright IBM Corp. 1992, 1995 217

Handling Signals

Using C++ and OS/2 Exception Handling in the Same Program

You can make use of C++ exception handling facilities and the OS/2 exception
handling facilities in the same program. In fact, VisualAge C++ implements the C++
exception handling facilities using the OS/2 exception handling.

Note: If you use OS/2 exception handling in a program that also uses C++ exception
handling, you must not have an OS/2 exception handler that has default behaviour for
an unidentified exception. You should always avoid using such an exception handler,
but you should be particularly careful to avoid it in programs that use C++ exception
handling because the results can be unpredictable.

 Handling Signals

Signals are C and C++ language constructs provided for error handling. A signal is a
condition reported as a result of an error in program execution. It may also be caused
by deliberate programmer action. With the VisualAge C++ product, operating system
exceptions are mapped to signals for you. VisualAge C++ product provides a number
of different symbols to differentiate between error conditions. The signal constants
are defined in the <signal.h> header file.

C provides two functions that deal with signal handling in the runtime environment:
raise and signal. Signals can be reported by an explicit call to raise, but are
generally reported as a result of a machine interrupt (for example, division by zero),
of a user action (for example, pressing Ctrl-C or Ctrl-Break), or of an operating
system exception.

Use the signal function to specify how to handle a particular signal. For each
signal, you can specify one of 3 types of handlers:

 1. SIG_DFL

Use the VisualAge C++ default handling. For most signals, the default action is
to terminate the process with an error message. See Figure 17 on page 219 for a
list of signals and the default action for each. If the /Tx+ option is specified, the
default action can be accompanied by a dump of the machine state to file handle
2, which is usually associated with stderr. Note that you can change the
destination of the machine-state dump and other messages using the
_set_crt_msg_handle function, which is described in the C Library Reference.

 2. SIG_IGN

Ignore the condition and continue running the program. Some signals cannot be
ignored, such as division by zero. If you specify SIG_IGN for one of these
signals, the VisualAge C++ library will treat the signal as if SIG_DFL was
specified.

218 VisualAge C++ Programming Guide

Default Signal Handling

3. Your own signal handler function

Call the function you specify. It can be any function, and can call any library
function. Note that when the signal is reported and your function is called, signal
handling is reset to SIG_DFL to prevent recursion should the same signal be
reported from your function.

The initial setting for all signals is SIG_DFL, the default action.

 The signal and raise functions are described in more detail in the C Library

Reference.

Default Handling of Signals

The runtime environment will perform default handling of a given signal unless a
specific signal handler is established or the signal is disabled (set to SIG_IGN). You
can also set or reset default handling by coding:

 signal(sig, SIG_DFL);

The default handling depends upon the signal that is being handled. For most signals,
the default is to pass the signal to the next exception handler in the chain (the
chaining of exception handlers is described in “Registering an OS/2 Exception
Handler” on page 240).

Unless you have set up your own exception handler, as described in “Creating Your
Own OS/2 Exception Handler” on page 232, the default OS/2 exception handler
receives the signal and performs the default action, which is to terminate the program
and return an exit code. The exit code indicates:

1. The reason for the program termination. For the possible values and
meanings of the termination code, see DosExecPgm in the Control Program Guide

and Reference.

2. The return code from DosExit. For the DosExit return codes, see the
Control Program Guide and Reference.

The following table lists the C signals that VisualAge C++ runtime library supports,
the source of the signal, and the default handling performed by the library.

Figure 17 (Page 1 of 2). Default Handling of Signals

Signal Source Default Action

SIGABRT Abnormal termination signal sent
by the abort function

Terminate the program with exit
code 3.

 Chapter 14. Signal and OS/2 Exception Handling 219

Default Signal Handling

Figure 17 (Page 2 of 2). Default Handling of Signals

Signal Source Default Action

SIGBREAK Ctrl-Break signal Pass the signal to the next exception
handler in the chain. If the
exception handler is the OS/2
handler, the program terminates.

SIGFPE Floating-point exceptions that are
not masked3, such as overflow,
division by zero, integer math
exceptions, and operations that are
not valid

Pass the signal to the next exception
handler in the chain. If the
exception handler is the OS/2
handler, the program terminates.

SIGILL Disallowed instruction Pass the signal to the next exception
handler in the chain. If the
exception handler is the OS/2
handler, the program terminates.

SIGINT Ctrl-C signal Pass the signal to the next exception
handler in the chain. If the
exception handler is the OS/2
handler, the program terminates.

SIGSEGV Attempt to access a memory
address that is not valid

Pass the signal to the next exception
handler in the chain. If the
exception handler is the OS/2
handler, the program terminates.

SIGTERM Program termination signal sent by
the user or operating system

Pass the signal to the next exception
handler in the chain. If the
exception handler is the OS/2
handler, the program terminates.

SIGUSR1 User-defined signal Ignored.

SIGUSR2 User-defined signal Ignored.

SIGUSR3 User-defined signal Ignored.

3 For more information on masking floating-point exceptions, see“Handling Floating-Point Exceptions” on page 248 .

220 VisualAge C++ Programming Guide

Establishing a Signal Handler

You can establish or register your own signal handler with a call to the signal
function:

 signal(sig, sig_handler);

where sig_handler is the address of your signal handling function. The signal
handler is a C function that takes a single integer argument (or two arguments for
SIGFPE), and may have either _System or _Optlink linkage.

A signal handler for a particular signal remains established until one of the following
occurs:

¹ A different handler is established for the same signal.

¹ The signal is explicitly reset to the system default with the function call
signal(sig, SIG_DFL).

¹ The signal is reported. When your signal handler is called, the handling for that
signal is reset to the default as if the function call signal(sig_num, SIG_DFL)
were explicitly made immediately before the signal handler call.

Note: A signal handler can also become deregistered if the load module where the
signal handler resides is deleted using the _freemod function. In this situation, when
the signal is raised, an OS/2 exception occurs and the behavior is undefined.

Writing a Signal Handler Function

A signal handler function may call any non-critical C library functions. (For a list of
critical functions, see Figure 20 on page 231.) Your signal handler may handle the
signal in any of the following ways:

1. Calling exit or abort to terminate the process.

2. Calling _endthread to terminate the current thread of a multithread program.
The process continues to run without the thread. You must ensure that the loss
of the thread does not affect the process. Note that calling _endthread for
thread 1 of your process is the same as calling exit.

3. Calling longjmp to go back to an earlier point in the current thread where you
called setjmp. When you call setjmp, it saves the state of the thread at the time
of the call. When you call longjmp at a later time, the thread is reset to the state
saved by setjmp, and starts running again at the place where the call to setjmp
was made.

4. Returning from the function to restart the thread as though the signal has not
occurred. If this is not possible, the VisualAge C++ library terminates your
process.

 Chapter 14. Signal and OS/2 Exception Handling 221

Signal Handling Example

Example of a

C Signal

Handler

The following code gives a simple example of a signal handler function for a
single-thread program. In the example, the function chkptr checks a given number
of bytes in an area of storage and returns the number of bytes that you can access.
The flow of the function's execution is described after the code.

#include <signal.h>
#include <setjmp.h>
#include <stdio.h>
#include <os2.h>

static void mysig(int sig); /* signal handler prototype */
static jmp_buf jbuf; /* buffer for machine state */

int chkptr(void * ptr, int size)
{

void (* oldsig)(int); /* where to save the old signal handler */
volatile char c; /* volatile to ensure access occurs */
int valid = 0; /* count of valid bytes */
char * p = ptr;

oldsig = signal(SIGSEGV,mysig); /* set the signal handler */ ▌1▐

if (!setjmp(jbuf)) /* provide a point for the */ ▌2▐
{ /* signal handler to return to */

 while (size--) ◄──┐
 { �

c = *p++; /* check the storage and */ � ▌3▐
valid++; /* increase the counter */ �

 } ◄──┘
 }

signal(SIGSEGV,oldsig); /* reset the signal handler */ ▌5▐
return valid; /* return number of valid bytes */ ▌6▐

}

Figure 18 (Part 1 of 2). Example Illustrating a Signal Handler

222 VisualAge C++ Programming Guide

Signal Handling Example

static void mysig(int sig) ◄─┐
{ ¡
 UCHAR FileData[100];
 ULONG Wrote;

strcpy(FileData, "Signal Occurred.\n\r");
DosWrite(2, (PVOID)FileData, strlen(FileData), &Wrote); ¡ ▌4▐
longjmp(jbuf,1); /* return to the point of the setjmp call */ �

 ◄─┘
}

Figure 18 (Part 2 of 2). Example Illustrating a Signal Handler

▌1▐ The program registers the signal handler mysig and saves the original
handler in oldsig so that it can be reset at a later time.

▌2▐ The call to setjmp saves the state of the thread in jbuf. When you call
setjmp directly, it returns 0, so the code within the if statement is run.

▌3▐ The loop reads in and checks each byte of the buffer, incrementing valid for
each byte successfully copied to c.

Assuming that not all of the buffer space is available, at some point in the loop p
points to a storage location the process cannot access. An OS/2 exception is
generated and translated by the VisualAge C++ library to the SIGSEGV signal.
The library then resets the signal handler for SIGSEGV to SIG_DFL and calls
the signal handler registered for SIGSEGV (mysig).

▌4▐ The mysig function prints an error message and uses longjmp to return to
the place of the setjmp call in chkptr.

Note: mysig does not reset the signal handler for SIGSEGV, because that signal
is not intended to occur again. In some cases, you may want to reset signal
handling before the signal handler function ends.

▌5▐ Because setjmp returns a nonzero value when it is called through longjmp,
the if condition is now false and execution falls through to this line. The signal
handling for SIGSEGV is reset to whatever it was when chkptr was entered.

▌6▐ The function returns the number of valid bytes in the buffer.

As the preceding example shows, your program can recover from a signal and
continue to run successfully.

 Chapter 14. Signal and OS/2 Exception Handling 223

Signal Handling in Multithread Programs

Each thread has its own set of signals, and signal handlers are registered
independently on each thread. If you establish a signal handler or raise a signal on
one thread, you do not affect any other thread. For example, if thread 1 calls signal
as follows:

 signal(SIGFPE, handlerfunc);

then the handler handlerfunc is registered for thread 1 only. All other threads are
handled using the defaults.

When a thread starts, all of its signal handlers are set to SIG_DFL. If you want any
other signal handling for that thread, you must explicitly register it using signal.

A signal is always handled on the thread that generated it, except for SIGBREAK,
SIGINT, and SIGTERM. These three signals are handled on the thread that
generated them only if they were raised using the raise function. If they were raised
by an exception, they will be handled on thread 1. Thus to establish a signal handler
for them, you must call signal in thread 1.

When you call the raise function, the handler for the signal you raise must be
established on the thread where the call was made.

Note: You can use raise to signal your own conditions using the signals SIGUSR1,
SIGUSR2, and SIGUSR3. You can also use this function to generate signals to test
your signal handlers.

Signal Handling Considerations

When you use signal handlers, keep the following points in mind:

¹ You can register anything as a signal handler. It is up to you to make sure that
you are registering a valid function.

¹ If your signal handler resides in a DLL, ensure that you change the signal handler
when you unload the DLL. If you unload your DLL without changing the signal
handler, no warnings or error messages are generated. When your signal handler
gets called, your program will probably terminate. If another DLL has been
loaded in the same address range, your program may continue but with undefined
results.

¹ Your signal handler should not assume that SIGSEGV always implies an invalid
data pointer. It can also occur, for example, if an address pointer goes outside of
your code segment.

224 VisualAge C++ Programming Guide

¹ The SIGILL signal is not guaranteed to occur when you call an invalid function
using a pointer. If the pointer points to a valid instruction stream, SIGILL is not
raised.

¹ When you use longjmp to leave a signal handler, ensure that the buffer you are
jumping to was created by the thread that you are in. Do not call setjmp from
one thread and longjmp from another. The VisualAge C++ library terminates a
process where such a call is made.

¹ If you use console I/O functions, including gets and scanf, and a SIGINT,
SIGBREAK, or SIGTERM signal occurs, the signal is reported after the library
function returns. Because your signal handler can call any non-critical library
function, one of these functions could be reentered. To protect the internal data
structures, some library code is placed in "must complete" sections. When a
signal occurs, the library waits until the "must complete" section ends before it
reports the signal.

Note: You can use the OS/2 APIs DosEnterMustComplete and
DosExitMustComplete to create your own "must complete" sections of code.

See the Control Program Guide and Reference for more information on these
APIs.

¹ Variables referenced by both the signal handler and by other code should be
given the attribute volatile to ensure they are always updated when they are
referenced. Because of the way the compiler optimizes code, the following
example may not work as intended when compiled with the /O+ option:

 Chapter 14. Signal and OS/2 Exception Handling 225

void sig_handler(int);
static int stepnum;

int main(void)
{

stepnum = 0;
 signal(SIGSEGV, sig_handler);

...
stepnum = 1; ▌1▐

...
stepnum = 2; ▌2▐

}

void sig_handler(int x)
{
 UCHAR FileData[100];
 ULONG Wrote;

strcpy(FileData, "Error at Step %d\n\r");
DosWrite(2, (PVOID)FileData, strlen(FileData), &Wrote, stepnum);

}

When using optimization, the compiler may not immediately store the value 1 for
the variable stepnum. It may never store the value 1, and store only the value 2.
If a signal occurs between statement ▌1▐ and statement ▌2▐, the value of
stepnum passed to sig_handler may not be correct.

Declaring stepnum as volatile indicates to the compiler that references to this
variable have side effects. Changes to the value of stepnum are then stored
immediately.

¹ C++ Consideration: When you use longjmp to recover from a signal in a C++
program, automatic destructors are not called for objects placed on the stack
between the longjmp call and the corresponding setjmp call. Because the ANSI
draft of the C++ language does not specify the behavior of a throw statement in a
signal handler, the most portable way to ensure the appropriate destructors are
called is to add statements to the setjmp location that will do a throw if
necessary.

226 VisualAge C++ Programming Guide

VisualAge C++ Default OS/2 Exception Handling

Handling OS/2 Exceptions

An OS/2 exception is generated by the operating system to report an abnormal
condition. OS/2 exceptions are grouped into two categories:

1. Asynchronous exceptions, which are caused by actions outside of your current
thread. There are only two:

¹ XCPT_SIGNAL, caused by a keyboard signal (Ctrl-C, Ctrl-Break) or the
process termination exception. This exception can only occur on thread 1 of
your process.

¹ XCPT_ASYNC_PROCESS_TERMINATE, caused by one of your threads
terminating the entire process. This exception can occur on any thread.

2. Synchronous exceptions, which are caused by code in the thread that receives the
exception. All other OS/2 exceptions fall into this category.

Just as you use signal handlers to handle signals, use exception handlers to handle
OS/2 exceptions. Although exception handling offers additional function, because
signal handling is simpler you may want to use both.

VisualAge C++ Default OS/2 Exception Handling

The VisualAge C++ library provides its own default exception handling functions:
_Lib_excpt, for OS/2 exceptions occurring in library functions, and _Exception, for
all other OS/2 exceptions. You can use these exception handlers or create your own
as described in “Creating Your Own OS/2 Exception Handler” on page 232.

The function _Exception is the C language exception handler. It is declared as:

 #include <os2.h>

unsigned long _System _Exception(EXCEPTIONREPORTRECORD * report_rec,
EXCEPTIONREGISTRATIONRECORD * reg_rec,
CONTEXTRECORD * exc,
void * dummy);

This exception handler is registered by the VisualAge C++ compiler for every thread
or process that is started by _beginthread, unless #pragma handler is specified for
the function. The function _Exception maps recognized OS/2 exceptions to C
signals, which can then be passed by the runtime library to the appropriate signal
handlers.

 Chapter 14. Signal and OS/2 Exception Handling 227

VisualAge C++ Default OS/2 Exception Handling

Figure 19 shows which types of OS/2 exception are recognized by _Exception, the
names of the exceptions, and the C signals to which each exception type is mapped.
These are the only OS/2 exceptions handled by _Exception. The Continuable

column indicates whether the program will continue if the corresponding signal
handler is SIG_IGN or if a user-defined signal handler returns. If "No" is indicated,
the program can only be continued if you provide a signal handler that uses longjmp
to jump to another part of the program.

If the signal handler value is set to SIG_DFL, the default action taken for each of these
exceptions is to terminate the program with an exit code of 99.

Figure 19 (Page 1 of 2). Mapping Between Exceptions and C Signals

OS/2 Exception C Signal Continuable?

Divide by zero

 XCPT_INTEGER_DIVIDE_BY_ZERO

SIGFPE No

NPX387 error

 XCPT_FLOAT_DENORMAL_OPERAND
 XCPT_FLOAT_DIVIDE_BY_ZERO
 XCPT_FLOAT_INEXACT_RESULT
 XCPT_FLOAT_INVALID_OPERATION
 XCPT_FLOAT_OVERFLOW
 XCPT_FLOAT_STACK_CHECK
 XCPT_FLOAT_UNDERFLOW

SIGFPE No; except for
XCPT_FLOAT_INEXACT_RESULT

Overflow occurred

 XCPT_INTEGER_OVERFLOW

SIGFPE Yes; resets the overflow
flag

Bound opcode failed

 XCPT_ARRAY_BOUNDS_EXCEEDED

SIGFPE No

Opcode not valid

 XCPT_ILLEGAL_INSTRUCTION
 XCPT_INVALID_LOCK_SEQUENCE
 XCPT_PRIVILEGED_INSTRUCTION

SIGILL No

General Protection fault

 XCPT_ACCESS_VIOLATION
 XCPT_DATATYPE_MISALIGNMENT

SIGSEGV No

Ctrl-Break

 XCPT_SIGNAL (XCPT_SIGNAL_BREAK)

SIGBREAK Yes

Ctrl-C

 XCPT_SIGNAL (XCPT_SIGNAL_INTR)

SIGINT Yes

228 VisualAge C++ Programming Guide

Library Exception Handling

Note: The Integer Overflow and Bound opcode exceptions will never be caused by
code generated by VisualAge C++ compiler.

The following OS/2 exceptions are also recognized, but have no corresponding C
signal. If one of these OS/2 exceptions occurs, it is passed to the next available
exception handler, or if none is registered, it is passed to the operating system:

An out-of-stack exception occurs when the guard page of the stack is accessed.
When the operating system encounters this exception, it automatically allocates a new
guard page and the exception is continued. A nested-unable-to-grow-stack exception
occurs when a guard page violation cannot be processed because there is insufficient
stack space. Stack probes are also required to make automatic stack growth work
properly.

 For more information on guard page allocation and automatic stack growth, see
the User's Guide.

Figure 19 (Page 2 of 2). Mapping Between Exceptions and C Signals

OS/2 Exception C Signal Continuable?

End process

 XCPT_SIGNAL (XCPT_SIGNAL_KILLPROC)

SIGTERM Yes

OS/2 Exception Continuable?

Out of stack exception

 XCPT_GUARD_PAGE_VIOLATION

Yes

Synchronous process termination

 XCPT_PROCESS_TERMINATE

No

Asynchronous process termination

 XCPT_ASYNC_PROCESS_TERMINATE

No

Unwind target not valid

 XCPT_INVALID_UNWIND_TARGET

No

OS/2 Exception Handling in Library Functions

There are two classes of library functions that require special exception handling:
math functions and critical functions.

OS/2 exceptions occurring in all other library functions are treated as though they
occurred in regular user code.

 Chapter 14. Signal and OS/2 Exception Handling 229

Library Exception Handling

Math

Functions

Before _Exception converts an OS/2 exception to a C signal, it first calls the
VisualAge C++ library exception handler, _Lib_excpt. The _Lib_excpt function
determines if the exception occurred in a math library function. The _Lib_excpt
function is declared as follows:

 #include <os2.h>

unsigned long _System _Lib_excpt(EXCEPTIONREPORTRECORD * report_rec,
EXCEPTIONREGISTRATIONRECORD * reg_rec,
CONTEXTRECORD * ecx,
void * dummy);

If the exception does occur in a math function and it is a floating-point error,
_Lib_excpt handles the exception and returns XCPT_CONTINUE_EXECUTION to the
operating system to indicate the exception has been handled. Any signal handler
function you may have established will not be called.

Important: If you are creating your own exception handler, it should first call
_Lib_excpt to ensure that the exception did not occur in a library function.

If the cause of the OS/2 exception was not a floating-point error, the exception is
returned to _Exception. The _Exception function then converts the OS/2 exception
to the corresponding C signal and performs one of the following actions:

1. Terminates the process. If /Tx+ was specified, _Exception performs a
machine-state dump to file handle 2, unless the exception was SIGBREAK, SIGINT,
or SIGTERM, in which case the machine state is not meaningful.

2. Handles the exception and returns XCPT_CONTINUE_EXECUTION to the operating
system.

3. Calls the signal handler function provided by you for that signal. A return from
the signal handler results in either the return of XCPT_CONTINUE_EXECUTION to
the operating system or the termination of the process as in the first action above.

 For more information about exception-handling return codes, refer to the Control

Program Guide and Reference.

230 VisualAge C++ Programming Guide

Library Exception Handling

Critical

Functions

All nonreentrant functions are classified as critical functions. Most I/O and
allocation functions, and those that begin or end threads or processes, fall in this
class. The critical functions are:

OS/2 exceptions in critical functions generally occur only if your program passes a
pointer that is not valid to a library function, or if your program overwrites the
library's data areas. Because calling a signal handler to handle an OS/2 exception
from one of these functions can have unexpected results, a special exception handler
is provided for critical functions. You cannot override this exception handler.

If the OS/2 exception is synchronous (SIGFPE, SIGILL, or SIGSEGV), the default
action is taken, which is to pass the exception on to the next registered exception
handler. Any exception handler you may have registered will not be called, and will
receive only the termination exception.

If the OS/2 exception is asynchronous, it is deferred until the library function has
finished. The exception is then passed to _Exception, which converts the exception
to the corresponding C signal and performs the appropriate action.

Note: If you use console I/O functions (for example, gets) and a SIGINT,
SIGBREAK, or SIGTERM signal occurs, the signal is deferred until the function

Figure 20. Critical Functions

atexit
calloc
_cgets
clearerr
_cprintf
_cputs
_cscanf
_debug_calloc
_debug_free
_debug_heapmin
_debug_malloc
_debug_realloc
_debug_ucalloc
_debug_uheapmin
_debug_umalloc
_dump_allocated
_endthread
_Exception
execl
execle
execlp
_execlpe

execv
execve
execvp
_execvpe
exit
fclose
_fcloseall
fdopen
feof
ferror
fflush
fgetc
fgetpos
fgets
fileno
_flushall
fopen
fprintf
fputc
fputs
fread
free

freopen
fscanf
fseek
fsetpos
ftell
fwrite
_getch
_getche
getenv
gets
_heap_check
_heapchk
_heapmin
_heapset
_heap_walk
_interupt
_kbhit
_Lib_excpt
malloc
_onexit
printf
_putch

putenv
puts
raise
realloc
remove
rename
rewind
_rmtmp
scanf
setlocale
setvbuf
signal
_spawnl
_spawnle
_spawnlp
_spawnlpe
_spawnv
_spawnve
_spawnvp
_spawnvpe
system
_tcalloc

tempnam
_tfree
_theapmin
_tmalloc
tmpfile
tmpnam
_trealloc
_uaddmem
_ucalloc
_ucreate
_udefault
_udestroy
_udump_allocated
_dump_allocated_delta
_udump_allocated_delta
ungetc
_ungetch
_uheapchk
_uheapmin
_uheapset
_uheap_walk
_umalloc
vfprintf
vprintf

 Chapter 14. Signal and OS/2 Exception Handling 231

User-Created OS/2 Exception Handlers

returns, for example, after all data for the keyboard function has been entered. To
avoid this side effect, use a noncritical function like read or the OS/2 API DosRead
to read data from the keyboard.

Creating Your Own OS/2 Exception Handler

You can use OS/2 APIs and the information provided in the <bsexcpt.h> header file
found in the \IBMCPP\INCLUDE\os2 directory to create your own exception handlers
to use alone or with the two provided handler functions. Exception handlers can be
complex to write and difficult to debug, but creating your own offers you two
advantages:

1. You receive more information about the error condition.
2. You can intercept any OS/2 exception. The VisualAge C++ library passes some

exceptions back to the operating system because there is no C semantic for
handling them.

Prototype of an OS/2 Exception Handler

The prototype for all exception handlers is:

 #define INCL_BASE
 #include <os2.h>

APIRET APIENTRY MyExceptHandler(EXCEPTIONREPORTRECORD *,
 EXCEPTIONREGISTRATIONRECORD *,
 CONTEXTRECORD *,
 PVOID dummy);

where:

APIRET Specifies the return type of the function. If you return from your exception
handler, you must return one of the following two values:

1. XCPT_CONTINUE_SEARCH indicates that the exception has not been
handled and tells the operating system to pass the exception to the next
exception handler.

2. XCPT_CONTINUE_EXECUTION indicates that the exception condition has
been corrected and tells the operating system to resume running the
application using the information in the CONTEXTRECORD.

APIENTRY
Defines the function linkage. The OS/2 header files found in the
ibmcpp\include\os2 directory header files define APIENTRY as _System

linkage. Use the APIENTRY keyword rather than specifying the linkage type
yourself. Note that your exception handler must be an external function; it
cannot be static.

232 VisualAge C++ Programming Guide

User-Created OS/2 Exception Handlers

EXCEPTIONREPORTRECORD *
Points to a structure that contains high-level information about the
exception.

EXCEPTIONREGISTRATIONRECORD *
Points to the record that registered the exception handler. The address of
the record is always on the stack.

CONTEXTRECORD *
Points to a structure that contains information about the state of the thread
at the time of the exception, including the register contents and the state of
the floating-point unit and flags. When an exception handler returns
XCPT_CONTINUE_EXECUTION, the machine state is reloaded from this
structure. You should only modify the contents of this structure if you are
sure your exception handler will return XCPT_CONTINUE_EXECUTION.

PVOID Is a pointer to void that you must pass back unchanged to the operating
system.

The exception handling structures are defined in the <bsexcpt.h> header file found in
the ibmcpp\include\os2 directory.

Processing Exception Information

When an exception occurs, the operating system provides a considerable amount of
information. Of this, the information contained in the EXCEPTIONREPORTRECORD
structure can be quite useful.

The EXCEPTIONREPORTRECORD is defined as:

 struct _EXCEPTIONREPORTRECORD
 {
 ULONG ExceptionNum;
 ULONG fHandlerFlags;
 struct _EXCEPTIONREPORTRECORD *NestedERR;
 PVOID ExceptionAddress;
 ULONG cParameters;
 ULONG ExceptionInfo[EXCEPTION_MAXIMUM_PARAMETERS];
 };

 Chapter 14. Signal and OS/2 Exception Handling 233

User-Created OS/2 Exception Handlers

The structure fields provide the following information:

ExceptionNum
The exception number. There are several exceptions that you will only
encounter by using an OS/2 exception handler because the VisualAge C++
default handler passes them to the operating system to handle. They are:

XCPT_PROCESS_TERMINATE
Indicates that the current thread has called DosExit, and the process
is about to end. Until your exception handler ends, the thread
continues as though DosExit had not been called.

XCPT_ASYNC_PROCESS_TERMINATE
Indicates that some other thread in the process has called DosExit
and that your current thread is about to end also. You can decide to
continue running the current thread and return the exception as
handled.

XCPT_ACCESS_VIOLATION
Indicates an invalid attempt was made to access memory (similar to
the SIGSEGV signal). When this exception occurs, the
ExceptionInfo field provides the address that generated the
exception and the type of access that was attempted (read or write).

XCPT_GUARD_PAGE_VIOLATION
Indicates that the current thread tried to access a memory page
marked as a guard page. Usually it means that your application has
accessed a guard page on the stack. In most cases, you will probably
pass the exception to the operating system, which will allocate another
4K of committed memory for your thread and a new guard page. The
operating system requires about 1.5K to place the information about
the exception on the stack and then call the exception handler. If you
know you are running out of stack space, you may want to end your
process.

XCPT_UNABLE_TO_GROW_STACK
Indicates that the operating system tried to move your guard page, but
no memory remained on the stack. If you suppressed stack probe
generation when you compiled (with the /Gs+ option), there may not
be enough stack for you to even receive the exception, in which case
your process terminates with an operating system trap.

You can also use the DosRaiseException API to create and raise your own
exceptions that you can then handle with your own exception handler.

234 VisualAge C++ Programming Guide

User-Created OS/2 Exception Handlers

fHandlerFlags
This field indicates how the exception occurred and what you can do to
handle it. It includes the following bits:

EH_NONCONTINUABLE
You cannot continue running the thread once you leave the exception
handler. If you try to return XCPT_CONTINUE_EXECUTION, an error is
generated. You cannot reset the bit. However, you can intentionally
set the bit to make an exception noncontinuable.

EH_UNWINDING
A longjmp has been done over this exception handler and the handler
is to be deregistered. If your function uses a mutex semaphore
(described in the Toolkit documentation), you should release it when
you receive this exception.

EH_EXIT_UNWIND
A DosExit call has been made and the exception has been passed
back to the operating system. This exception gives you an
opportunity to do something before your exception handler is
deregistered.

EH_NESTED_CALL
An exception occurred while another exception was being handled.
This situation should be handled carefully: each exception requires
about 1.5K of stack, so nesting exceptions too deep can cause you to
run out of stack.

_EXCEPTIONREPORTRECORD *NestedERR
If a nested exception occurs, the information about the exception is found in
this structure.

ExceptionAddress
This field contains the instruction address where the exception occurred.
Typically, you cannot determine at run time which function caused the
problem.

ExceptionInfo
For some exceptions, this field may contain additional information. For
example, if XCPT_ACCESS_VIOLATION occurs, it contains the address at
which the memory access failed.

cParameters
This field contains the number of bytes of information.

 Chapter 14. Signal and OS/2 Exception Handling 235

User-Created OS/2 Exception Handlers

The CONTEXTRECORD structure contains information about the machine state of the
thread. It is generally of limited use to a high-level programmer because to continue
a process after a synchronous exception, you would need to modify the
CONTEXTRECORD, and it is extremely difficult to ensure the exception handler code is
correct for all possible conditions. You should modify the CONTEXTRECORD only if
you have no other alternative to correct your program.

You can use the CONTEXTRECORD to trace the stack and produce useful debugging
information. Because the VisualAge C++ and operating system calling conventions
preserve some registers across calls, you cannot reconstruct the registers by traversing
the stack to recover from the exception.

The 32-bit stack usually looks like the following:

 & │ . │
 │ ├────────────────────┤
 │ │ Return Address │ │
 │ ├────────────────────┤ │
 └────┤ EBP │◄───┐ │
 ├────────────────────┤ │ │ stack grows
 │ . │ │ │ down
 . │ │
 │ . │ │ │
 ├────────────────────┤ │ │
 │ Return Address │ │ 6
 ├────────────────────┤ │
 ┌───►│ EBP ├────┘
 │ ├────────────────────┤
 │ │ . │
 │ .
 │ │ . │
 │ ├────────────────────┤
 │ │ Return Address │
 │ ├────────────────────┤

└────┤ EBP │◄───────── EBP from exception context
├────────────────────┤ record points here

 │ . │
 │ . │

Notes:

1. If your code is optimized, you may not be able to trace the EBP chain.

2. If the stack is damaged, you may not be able to trace the EBP chain correctly.

3. You cannot trace over 16-bit calls.

4. You cannot trace over calls to inlined functions.

236 VisualAge C++ Programming Guide

Exception Handling Example

Example of Exception Handling

The following example shows a program similar to the one used for the signal
handling example on page 222. In this example, an exception handler is used instead
of a signal handler to detect access to memory that is not valid.

#define INCL_DOS
#define INCL_NOPMAPI
#include <os2.h>
#include <stdlib.h>
#include <setjmp.h>
#include <stdio.h>
#include <stddef.h> /* for _threadid */

void * tss_array[100]; /* array for 100 thread-specific pointers */

APIRET APIENTRY MyExceptionHandler(EXCEPTIONREPORTRECORD *,
 EXCEPTIONREGISTRATIONRECORD *,
 CONTEXTRECORD *,
 PVOID);
#pragma map(_Exception,"MyExceptionHandler")
#pragma handler(chkptr)

int chkptr(void * ptr, int size)
{

volatile char c; /* volatile to insure access occurs */
int valid = 0; /* count of valid bytes */
char * p = ptr; /* to satisfy the type checking for p++ */
jmp_buf jbuf; /* put the jump buffer in automatic storage */

/* so it is unique to this thread */

PTIB ptib; /* to get the TIB pointer */
 PPIB ppib;

unsigned int tid = *_threadid; /* get the thread id */
UCHAR FileData [100]

 ULONG Wrote;

/* create a thread specific jmp_buf */
tss_array[tid] = (void *) jbuf;

Figure 21 (Part 1 of 3). Example Illustrating an Exception Handler

 Chapter 14. Signal and OS/2 Exception Handling 237

Exception Handling Example

if (!setjmp(jbuf)) { /* provide a point to return to */

while (size--) /* scan the storage */
 {

c = *p++;
 valid++;
 }
 }

return valid; /* return number of valid bytes */
}

/* the exception handler itself */

APIRET APIENTRY MyExceptionHandler(EXCEPTIONREPORTRECORD * report_rec,
EXCEPTIONREGISTRATIONRECORD * register_rec,
CONTEXTRECORD * context_rec,

 PVOID dummy)
{

unsigned int tid = *_threadid; /* get the thread id */

/* check the exception flags */ ▌1▐
if (EH_EXIT_UNWIND & report_rec->fHandlerFlags) /* exiting */

 return XCPT_CONTINUE_SEARCH;

if (EH_UNWINDING & report_rec->fHandlerFlags) /* unwinding */
 return XCPT_CONTINUE_SEARCH;

if (EH_NESTED_CALL & report_rec->fHandlerFlags) /* nested exceptions */
 return XCPT_CONTINUE_SEARCH;

/* determine what the exception is */ ▌2▐
if (report_rec->ExceptionNum == XCPT_ACCESS_VIOLATION) {

/* this is the one that is expected */

Figure 21 (Part 2 of 3). Example Illustrating an Exception Handler

238 VisualAge C++ Programming Guide

Exception Handling Example

 UCHAR FileData[100];
 ULONG Wrote;

strcpy(FileData, "Detected invalid storage address %d\n\r");
DosWrite(2, (PVOID)FileData, strlen(FileData), &Wrote, stepnum);
longjmp((int *)tss_array[tid],1); /* return to the point of the */

/* setjmp call without */
/* restarting the while loop */

} /* endif */
 ▌3▐

return XCPT_CONTINUE_SEARCH; /* if it is a different exception */
}

Figure 21 (Part 3 of 3). Example Illustrating an Exception Handler

▌1▐ The first thing an exception handler should do is check the exception flags.
If EH_EXIT_UNWIND is set, meaning the thread is ending, the handler tells the
operating system to pass the exception to the next exception handler. It does the
same if the EH_UNWINDING flag is set, the flag that indicates this exception
handler is being removed.

The EH_NESTED_CALL flag indicates whether the exception occurred within an
exception handler. If the handler does not check this flag, recursive exceptions
could occur until there is no stack remaining.

▌2▐ The handler checks the exception number. In general, you should check for
only the exceptions that you expect to encounter so any addition of new
exception numbers does not affect your code. Assuming the exception is
XCPT_ACCESS_VIOLATION, the exception handler prints a message and calls
longjmp to return to the chkptr function.

▌3▐ If the exception is not the expected one, the handler tells the operating
system to pass it to the next exception handler.

 Chapter 14. Signal and OS/2 Exception Handling 239

Registering an OS/2 Exception Handler

Important: Return XCPT_CONTINUE_EXECUTION from an exception handler only if
you know that the thread can continue to run because either:

1. The exception is asynchronous and can be restarted.
2. You have changed the thread state so that the thread can continue.

If you return XCPT_CONTINUE_EXECUTION when neither of these conditions is
true, you could generate a new exception each time your exception handler
ends, eventually causing your process to lock.

Registering an OS/2 Exception Handler

The VisualAge C++ compiler automatically registers and deregisters the _Exception
handler for each thread or process so the _Exception is the first exception handler to
be called when an exception occurs. To explicitly register _Exception for a
function, use the #pragma handler directive before the function definition. This
directive generates the code to register the exception handler before the function runs.
Code to remove the exception handler when the function ends is also generated.

The format of the directive is:

 #pragma handler(function)

where function is the name of the function for which the exception handler is to be
registered.

Note: If you use DosCreateThread to create a new thread, you must use #pragma
handler to register the VisualAge C++ exception handler for the function that the
new thread will run.

You can register your own exception handler in place of _Exception using these
directives:

#pragma map(_Exception, "MyExceptHandler")
 #pragma handler(myfunc)

The #pragma map directive tells the compiler that all references to the name
_Exception are to be converted to MyExceptHandler. The #pragma handler
directive would normally register the exception handler _Exception for the function
myfunc, but because of the name mapping, MyExceptHandler is actually registered.
The compiler also generates code to deregister MyExceptHandler when myfunc
returns.

240 VisualAge C++ Programming Guide

Registering an OS/2 Exception Handler

If you use the method described above, you can have only one exception handler per
module. You may need to place functions in separate modules to get the exception
handling you want. The handler is registered on function entry and deregistered on
exit; you cannot register the handler over only part of a function. For more
flexibility, you can use OS/2 APIs to register your exception handler.

The operating system finds exception handlers by following a chain rooted in the
thread information block (TIB). When you register an exception handler, you place
the address of the handler and the chain pointer from the TIB in an
EXCEPTIONREGISTRATIONRECORD structure, and then update the TIB to point to the
new EXCEPTIONREGISTRATIONRECORD.

When you use #pragma handler, the EXCEPTIONREGISTRATIONRECORD is generated
and attached to the chain for you. You can register your own records using the
DosSetExceptionHandler and DosUnsetExceptionHandler APIs, as shown in the
following example:

#define INCL_BASE
#include <os2.h>

/* the prototype for the exception handler */
APIRET APIENTRY MyExceptionHandler(EXCEPTIONREPORTRECORD *,
 EXCEPTIONREGISTRATIONRECORD *,
 CONTEXTRECORD *,
 PVOID);
int myfunction(...)
{

EXCEPTIONREGISTRATIONRECORD err = { NULL,MyExceptionHandler };

DosSetExceptionHandler(&err); /* register */
 .
 .
 .

DosUnsetExceptionHandler(&err); /* deregister */
}

Using the OS/2 APIs provides more flexibility than using #pragma handler. You
can register the exception handler over only a part of the function if you want. You
can also register more than one exception handler for a function. When you use
DosSetExceptionHandler to register your handler, you can also make the
EXCEPTIONREGISTRATIONRECORD part of a larger structure and then access the
information in that structure from inside the exception handler.

 Chapter 14. Signal and OS/2 Exception Handling 241

Registering an OS/2 Exception Handler

You must deregister the exception handler before the function ends. If you do not,
the next exception that occurs on the thread can have unexpected and undefined
results. When you use pragma handler, the exception handler is automatically
deregistered for you.

The following diagram shows the TIB chain:

 TIB
 ┌──────────────────────────────┐
 │ . │
 │ . │
 │ . │
 ├──────────────────────────────┤
 │ chain pointer (tib_pexchain) ├───┐
 └──────────────────────────────┘ │
 │
 ┌────────────────────┘
 │
 │ Stack
 │ ┌───────────────────────────────────────┐

│ │ . │
│ │ . │
│ │ . │

 Decreasing │ │ │
 Memory │ │ EXCEPTIONREGISTRATIONRECORD 1 │
 Addresses │ ├───────────────────────────────────────┤

│ │ │ pointer to handler (ExceptionHandler) ├──────► Handler Function
│ │ ├───────────────────────────────────────┤
│ │ -1 ◄──┤ chain pointer (prev_structure) │◄──┐
│ │ ├───────────────────────────────────────┤ │
│ │ │ . │ │
│ │ │ . │ │
│ │ │ . │ │
│ │ │ EXCEPTIONREGISTRATIONRECORD 2 │ │
│ │ ├───────────────────────────────────────┤ │
│ │ │ pointer to handler (ExceptionHandler) ├───┼──► Handler Function
│ │ ├───────────────────────────────────────┤ │
│ └────────►│ chain pointer (prev_structure) ├───┘

 │ ├───────────────────────────────────────┤
│ │ . │
│ │ . │
6 │ . │

Figure 22. TIB Chain. Names in parentheses are the names of the fields of the

EXCEPTIONREGISTRATIONRECORD structure.

242 VisualAge C++ Programming Guide

Signal/Exception Handling in DLLs

Each EXCEPTIONREGISTRATIONRECORD is chained to the next. When an exception
occurs, the operating system begins at the TIB and goes to each
EXCEPTIONREGISTRATIONRECORD in turn. It calls the exception handler and passes it
the exception information. The exception handler either handles the exception or tells
the operating system to pass the exception to the next handler in the chain. If the last
exception handler in the chain, identified by chain pointer with value -1, does not
handle the exception, the operating system takes the default action.

An EXCEPTIONREGISTRATIONRECORD must be on the stack, and each record must be at
a higher address than the previous one.

Handling Signals and OS/2 Exceptions in DLLs

Handling signals and OS/2 exceptions in DLLs is no different than handling signals
in executable files, providing all your DLLs and the executable files that use them are
created using the VisualAge C++ compiler, and only one VisualAge C++ library
environment exists for your entire application (your executable module and all DLLs).

The library environment is a section of information associated with and statically
linked to the VisualAge C++ library itself. You can be sure your program has only
one library environment if:

1. It consists of a single executable module. By definition, a single module has
only one copy of the VisualAge C++ library environment regardless of whether it
links to the library statically or dynamically.

2. Your executable module dynamically links to a single DLL that is statically
bound to the VisualAge C++ runtime library and that uses the VisualAge C++
library functions. The executable module then accesses the library functions
through the DLL.

3. Your executable modules and DLLs all dynamically link to the VisualAge C++
runtime library.

Note: The licensing agreement does not allow you to ship the VisualAge C++
library DLLs with your application. You can, however, create your own version of
the runtime library and dynamically link to it from all of your modules, ensuring that
only one copy of the library environment is used by your application. If you call any
VisualAge C++ library functions from a user DLL, you must call them all from that
DLL. The method of creating your own runtime library is described in “Creating
Your Own Runtime Library DLLs” on page 83.

 Chapter 14. Signal and OS/2 Exception Handling 243

Signal/Exception Handling in DLLs

If more than one of your modules is statically linked to the VisualAge C++ library,
your program has more than one library environment. Because there is no
communication between these environments, certain operations and functions become
restricted:

¹ Stream I/O. You can pass the file pointer between modules and read to or write
from the stream in any module, but you cannot open a stream in one library
environment or module and close it in another.

¹ Memory allocation. You can pass the storage pointer between modules, but you
cannot allocate storage in one library environment and free or reallocate it in
another.

¹ strtok, rand, and srand functions. A call to any of these functions in one
library environment has no effect on calls made in another environment.

¹ errno and _doserrno values. The setting of these variables in one library
environment has no effect on their values in another.

¹ Signal and OS/2 exception handlers. The signal and exception handlers for a
library environment have no effect on the handlers for another environment.

In general, it is easier to use only one library environment, but not always possible.
For example, if you are building a DLL that will be called by a number of
applications, you should assume that there may be multiple library environments and
code your DLL accordingly.

The following section describes how to use signal and exception handling when your
program has more than one library environment.

Signal and Exception Handling with Multiple Library Environments

When you have multiple library environments, you must treat signal and exception
handlers in a slightly different manner than you would with a single library
environment. Otherwise, the wrong handler could be called to handle a signal or
OS/2 exception.

For example, if you have an executable module and a DLL, each with its own library
environment, the _Exception exception handler is automatically registered for the
executable module when it starts. When the executable module calls a function in the
DLL, the thread of execution passes to the DLL. If an OS/2 exception then occurs in
the code in the DLL, it is actually handled by the exception handler in the executable
module's library environment. Any signal handling set up in the DLL is ignored.

When you have more than one library environment, you must ensure that an OS/2
exception is always handled by the exception handler for the library environment
where the exception occurred.

244 VisualAge C++ Programming Guide

Include #pragma handler statements in your DLL for every function in the DLL that
can be called from another module. This directive ensures the exception handler for
the DLL's library environment is correctly registered when the function is called and
deregistered when the function returns to the calling module. If functions in your
executable module can themselves be called back to from a DLL, include a #pragma
handler statement for each of them also.

Using OS/2 Exception Handlers for Special Situations

Using exception handlers can be especially helpful in the following situations:

¹ In multithread programs that use OS/2 semaphores. If you acquire a semaphore
and then use longjmp either explicitly or through a signal handler to move to
another place in your program, the semaphore is still owned by your code. Other
threads in your program may not be able to obtain ownership of the semaphore.

If you register an exception handler for the function where the semaphore is
requested, the handler can check for the unwind operation that occurs as a result
of a longjmp call. If it encounters an unwind operation, it can then release the
semaphore.

¹ In system DLLs. Using an exception handler allows you to run process
termination routines even if your DLL has global initialization and termination.

When a process terminates, functions are called in the following order:

1. Functions registered with the atexit or _onexit functions.
2. Exception handlers for termination exceptions.
3. Functions registered with the DosExitList API.
4. DLL termination routines.

You can include process termination routines in your exception handler and they
will be performed before the DLL termination routines are called.

 Chapter 14. Signal and OS/2 Exception Handling 245

OS/2 Exception Handling Considerations

OS/2 Exception Handling Considerations

All the restrictions for signal handling described on page 224 apply to exception
handling as well. There are also a number of additional considerations you should
keep in mind when you use exception handling:

¹ You must register an exception handler whenever you change library
environments to ensure that exception handling is provided for all C code.

¹ Ensure that you always deregister your exception handler. If you do not, your
process typically ends abnormally. It is very difficult to discover this problem
through debugging. If you use #pragma handler, the handler is automatically
deregistered; if you use the OS/2 APIs, you must call
DosUnsetExceptionHandler.

¹ If you register your own exception handler, the OS/2 exceptions you handle are
not seen by a signal handler. The exceptions you do not handle are passed to the
next exception handler. If the next handler is the VisualAge C++ default handler
_Exception, it converts the exception to a signal and calls the appropriate signal
handler.

¹ If you are using OS/2 semaphores and an exception occurs while your code owns
a semaphore, you must ensure that the semaphore is released. You can release
the semaphore either by continuing the exception or by explicitly releasing the
semaphore in the signal handler.

¹ Always check the exception flags to determine how the exception occurred. Any
exception handler can be unwound by a subsequent handler.

¹ Keep your exception handler simple and specific. Exception handlers are easier
to write and maintain if you limit what they can do. A handler that does
everything can be very large and very complicated.

¹ Check for and handle only the exceptions that you expect to encounter, and
provide a default exception handler to handle the unexpected. If the operating
system adds new exceptions, or if you create your own, the default handler will
handle them.

¹ If you are using your own exception handler, it receives the exception registration
record when an exception occurs, as described in “Registering an OS/2 Exception
Handler” on page 240. Do not use the return address of the calling function to
tell you where to resume execution, because the values of the registers other than
EBP (for example, EBX, EBI, and EDI) at the return are generally not available
to your exception handler.

¹ You need approximately 1.5K of stack remaining for the operating system to be
able to call your exception handler. If you do not have enough stack left, the
operating system terminates your process.

246 VisualAge C++ Programming Guide

OS/2 Exception Handling Considerations

¹ Neither of the VisualAge C++ default exception handlers are available in the
subsystem libraries. Because the subsystem libraries contain no critical or math
functions, the _Lib_excpt function is not required.

Restricted OS/2 APIs

When you use the VisualAge C++ default exception handlers, certain OS/2 APIs can
interfere with exception handling:

DosCreateThread
This API does not automatically register an exception handler for the new
thread. Use _beginthread instead, or use #pragma handler before the
DosCreateThread call to register the handler for the thread.

DosExit This API does not perform all necessary library termination routines.
Instead, use exit or _exit, abort, or _endthread, or simply fall out of
main.

DosUnwindException
This API can unwind or remove the VisualAge C++ exception handlers
from the stack. Use longjmp instead.

DosSetSignalExceptionFocus
Using this API to remove the signal focus from a VisualAge C++
application may prevent you from receiving SIGINT and SIGBREAK
exceptions from the keyboard.

DosAcknowledgeSignalException
This API interferes with the VisualAge C++ handling of signal exceptions.
The library exception handler acknowledges signals for you.

DosEnterMustComplete
This API can be used to delay the handling of asynchronous exceptions,
including termination exceptions, until a section of code has ended. You
must call DosExitMustComplete at the end of the section to reenable the
exception handling.

DosEnterCritSec
This API prevents execution from switching between threads until a section
of code has ended. You must call DosExitCritSec at the end of the
critical section of code. Use these APIs only if you cannot use a mutex
semaphore. If you must use them, keep critical sections short and avoid
including calls that may get blocked.

 Chapter 14. Signal and OS/2 Exception Handling 247

Handling Floating-Point Exceptions

Handling Floating-Point Exceptions

Floating-point exceptions require special exception handling. In general, you cannot
retry a floating-point exception without a significant knowledge of both the 80387
chip and the application that generated the exception. Because knowledge of your
application is beyond the capabilities of the VisualAge C++ library, it treats a
floating-point exception as a terminating condition.

You can use the _control87 function and the bit mask values defined in <float.h> to
mask floating-point exceptions, that is, to prevent them from being reported. Each bit
mask corresponds to a unique floating-point exception that can be masked
individually. Masking exceptions also changes the state of the floating-point control
word for the 80387 chip. When a floating-point exception is masked, the 80387 chip
performs a predetermined corrective action.

The bit masks are:

EM_INVALID Mask exceptions resulting from floating-point operations that are
not valid. Such an exception can be caused by a floating-point
value that is not valid, such as a signalling NaN, or by a problem
with the 80387 stack. The corrective action taken by the 80387
chip is to return a quiet NaN.

Note: Because this type of exception indicates a serious problem,
you should not mask it off.

EM_DENORMAL Mask exceptions resulting from the use of denormal floating-point
values. The corrective action is to use these values and allow for
gradual underflow. This type of exception is not meaningful under
the VisualAge C++ compiler and is masked off by default.

EM_ZERODIVIDE Mask the divide-by-zero exception. The 80387 chip returns a value
of infinity.

EM_OVERFLOW Mask the overflow exception. The 80387 chip returns a value of
infinity.

EM_UNDERFLOW Mask the underflow exception. The 80387 chip returns either a
denormal number or zero.

EM_INEXACT Mask the exception that indicates precision has been lost. Because
this type of exception is only useful when performing integer
arithmetic, while the 80387 chip is used for floating-point
arithmetic only, the exception is not meaningful and the 80387 chip
ignores it. This exception is masked off by default.

By default, the following bit masks are masked on by default. That is, the exceptions
that they correspond to are not masked:

248 VisualAge C++ Programming Guide

Machine-State Dumps

 ¹ EM_INVALID
 ¹ EM_ZERODIVIDE
 ¹ EM_OVERFLOW
 ¹ EM_UNDERFLOW

These bit masks are masked off by default. This means that the exceptions that they
correspond to are masked by default:

 ¹ EM_DENORMAL
 ¹ EM_INEXACT

For example, to mask the floating-point underflow exception from being reported, you
would code in your source file:

oldstate = _control87(EM_UNDERFLOW, EM_UNDERFLOW);

To mask it on again, you would code:

oldstate = _control87(0, EM_UNDERFLOW);

You can also reset the entire floating-point control word to the default state with the
_fpreset function. Both _fpreset and _control87 are described in the C Library

Reference.

Important: Because the VisualAge C++ math functions defined in <math.h> use
the 80387 chip, make sure that when you call any of them, the floating-point
control word is set to the default state to ensure exceptions are handled
correctly by the VisualAge C++ library.

Note also that the state of the floating-point control word is unique for each
thread, and changing it in one thread does not affect any other thread.

Interpreting Machine-State Dumps

Note: This section provides information to be used for Diagnosis, Modification, or
Tuning purposes. This information is not intended for use as a programming
interface.

If you rebuild your program with the /TI+ option, the IPMD debugger will identify
where in the source an exception took place. If the problem does not appear or
involves many process or timing problems, you can use the kernel debugger instead.
For details on using the kernel debugger, see the Kernel Debug Reference.

If you specify the /Tx+ option, when a process is ended because of an unhandled or
incorrectly handled exception, the exception handler performs a machine-state dump.
A machine-state dump consists of a number of runtime messages that show
information about the state of the system, such as the contents of the registers and the

 Chapter 14. Signal and OS/2 Exception Handling 249

Machine-State Dumps

reason for the exception. This information is sent to file handle 2, which is usually
associated with stderr. You can also use the _set_crt_msg_handle function to
redirect the messages to a file. See the C Library Reference for more information
about this function.

If you do not specify /Tx+, a message is generated giving the exception and the
address at which it occurred.

For example, the following program generates a floating-point exception. Because
the exception cannot be handled, a machine-state dump is performed. Figure 24 on
page 251 shows what is sent to stderr and explains the messages in the dump.

#include <math.h>

int main(void)
{

_Packed union SIGNAN { /* a union which allows us to set */
double dbl; /* the parts of a double value */
_Packed struct {

unsigned int siglow : 26;
unsigned int sighigh : 26;
unsigned int exp : 11;
unsigned int sign : 1;

 } dblrep;
 } signan;
 double x;

/* set the double value to a signalling */
/* NaN, which the library cannot handle */
signan.dblrep.sign = 0;
signan.dblrep.exp = 0x7ff;
signan.dblrep.sighigh = 0;
signan.dblrep.siglow = 1;

/* now call a math function with a */
/* signalling NaN to cause a trap */
x = atan2(signan.dbl,2.0);

Figure 23 (Part 1 of 2). Program to Cause a Machine-State Dump

250 VisualAge C++ Programming Guide

Machine-State Dumps

/* the program never gets here */
 return 0;
}

Figure 23 (Part 2 of 2). Program to Cause a Machine-State Dump

Floating Point Invalid Operation exception occurred at EIP = 00050000 on
 thread 0001. ▌1▐
Exception occurred in C Library routine called from EIP = 000112D8. ▌2▐
Register Dump at point of exception: ▌3▐
EAX = 00000001 EBX = 00000000 ECX = 000B0010 EDX = 00140010
EBP = 00000000 EDI = 00000000 ESI = 00061FCC ESP = 00061FA8 ▌4▐
 CS = 005B CSLIM = 1BFFFFFF DS = 0053 DSLIM = 1BFFFFFF
 ES = 0053 ESLIM = 1BFFFFFF FS = 150B FSLIM = 00000030
 GS = 0000 GSLIM = 00000000 SS = 0053 SSLIM = 1BFFFFFF
NPX Environment: ▌5▐
CW = 0362 TW = 3FFF IP = 005B:0001002B ▌6▐
SW = B881 OPCODE = 0545 OP = 0053:00023414
NPX Stack: ▌7▐
ST(7): exponent = 0000 significand = + 00000000 00000000 ▌8▐
Process terminating. ▌9▐

Figure 24. Example of a Machine-State Dump

▌1▐ The first line always states the nature of the exception and the place and thread
where the exception occurred. If you specify /Tx-, this is the only message that
is generated.

▌2▐ Indicates that the exception occurred within one of the C library functions. It
also indicates the place and thread where the call to that library function was
made.

You can use the address given in ▌1▐ and ▌2▐ to determine where in your code
the problem occurred. To do this, you must create a map file by specifying
either the compiler option /B"/map", or if you are linking your program
separately, the linker option /map.

 Chapter 14. Signal and OS/2 Exception Handling 251

▌3▐ Introduces the register dump.

▌4▐ Gives the values contained by each register at the time the exception occurred.
for information on the purpose of each register, see the documentation for your
processor chip.

▌5▐ Introduces the state of the numeric processor extension (NPX) at the time of the
exception.

▌6▐ Gives the values of the elements in the NPX environment.

▌7▐ Introduces the state of the NPX stack at the time of the exception.

▌8▐ One copy of this message appears for each valid stack entry in the NPX and
gives the values for each. In this example, because there is only one stack entry,
the message appears only once. If there are no valid stack entries, a different
message is issued in place of this message to state that fact.

▌9▐ Confirms that the process is terminating. It is one of several informational
messages that may accompany the initial exception message and register dump.

In general, a dump will always include items ▌1▐, ▌3▐, and ▌4▐. Item ▌2▐ appears
only if the exception occurred in a VisualAge C++ library function. Items ▌5▐ to ▌8▐
appear only if the NPX was in use at the time of the exception. Item ▌9▐ may or
may not appear, depending on the circumstances of each exception.

For a list of all the runtime messages and their explanations, see the online Language

Reference.

Note: If you copy and run the program in Figure 23 on page 250, you will get the
same messages as shown in Figure 24 on page 251, but the values given may be
different.

Common Problems that Generate Exceptions

The following is a list of some of the common problems that can generate runtime
exceptions:

¹ Improper use of memory. For, using a pointer to an object that has already been
freed can cause an exception, as can corrupting the heap. In such situations, try
rebuilding your program using the Debug Memory option, /Tm+.

¹ Using an invalid pointer.

¹ Passing an invalid parameter to a system function.

¹ Return codes from library or system calls that are not checked.

252 VisualAge C++ Programming Guide

Memory Management

15 Managing Memory

This section describes techniques you can use to manage the memory of your
program more efficiently. It includes information on the tiled and debug versions of
the memory management functions (like malloc), and also tells you how to create
and use your own heaps of memory. The runtime functions are described in
detail in the C Library Reference.

Differentiating between Memory Management Functions

The memory management functions defined by ANSI are calloc, malloc, realloc,
and free. These regular functions allocate and free memory from the default runtime
heap. (VisualAge C++ has added another function, _heapmin, to return unused
memory to the system.) VisualAge C++ also provides different versions of each of
these functions as extensions to the ANSI definition.

All the versions actually work the same way; they differ only in what heap they
allocate from, and in whether they save information to help you debug memory
problems. The memory allocated by all of these functions is suitably aligned for
storing any type of object.

The following table summarizes the different versions of memory management
functions, using malloc as an example of how the names of the functions change for
each version. They are all described in greater detail after the table.

To use these extensions, you must set the language level to extended, either with the
/Se compiler option or the #pragma langlvl(extended) directive.

Regular Version Debug Version

Default Heap malloc _debug_malloc

User Heap _umalloc _debug_umalloc

Tiled Heap (/Gt) _tmalloc _debug_tmalloc

 Copyright IBM Corp. 1992, 1995 253

Memory Management

 Heap-Specific Functions

Use the heap-specific versions to allocate and free memory from a user-created heap
that you specify. (You can also explicitly use the runtime heap if you want.) Their
names are prefixed by _u (for "user heaps"), for example, _umalloc, and they are
defined in <umalloc.h>.

The functions provided are:

 ¹ _ucalloc
 ¹ _umalloc
 ¹ _uheapmin

Notice there is no heap-specific version of realloc or free. Because they both
always check what heap the memory was allocated from, you can always use the
regular versions regardless of what heap the memory came from.

For more information about creating your own heaps and using the heap-specific
memory management functions, see “Managing Memory with Multiple Heaps” on
page 258.

 Tiled Functions

Use the tiled memory management functions to allocate and free memory from the
runtime's tiled memory heap. If you have objects that can be accessed by 16-bit
code, you should store them in tiled memory. Tiled memory does not cross 64K
boundaries, as long as the object is smaller than 64K. Objects larger than 64K are
aligned on 64K boundaries, but will also cross 64K boundaries.

When you use the tiled memory compiler option, /Gt, all calls to the regular memory
management functions are mapped to their tiled versions. You can also call the tiled
versions explicitly.

Note: If you parenthesize the calls to the regular memory management functions,
they are not mapped to their tiled versions.

The names of the tiled versions are prefixed by _t (for "tiled"), for example,
_tmalloc, and they are defined in <malloc.h> and <stdlib.h>.

The functions provided are:

 ¹ _tcalloc
 ¹ _tfree
 ¹ _theapmin
 ¹ _tmalloc
 ¹ _trealloc

254 VisualAge C++ Programming Guide

Memory Management

You can also create your own heaps of tiled memory. Creating your own heaps is
described in “Managing Memory with Multiple Heaps” on page 258.

For more information about sharing objects between 32-bit and 16-bit code, see
Chapter 12, “Calling between 32-Bit and 16-Bit Code” on page 191.

 Debug Functions

Use these functions to allocate and free memory from the default runtime heap, just
as you would use the regular versions. They also provide information that you can
use to debug memory problems.

Note: The information provided by these functions is Diagnosis, Modification, and
Tuning information only. It is not intended to be used as a programming
interface.

When you use the debug memory compiler option, /Tm, all calls to the regular
memory management functions are mapped to their debug versions. You can also
call the debug versions explicitly.

Note: If you parenthesize the calls to the regular memory management functions,
they are not mapped to their debug versions.

We recommend you place a #pragma strings(readonly) directive at the top of
each source file that will call debug functions, or in a common header file that each
includes. This directive is not essential, but it ensures that the file name passed to the
debug functions can't be overwritten, and that only one copy of the file name string is
included in the object module.

The names of the debug versions are prefixed by _debug_, for example,
_debug_malloc, and they are defined in <malloc.h> and <stdlib.h>.

The functions provided are:

 ¹ _debug_calloc
 ¹ _debug_free
 ¹ _debug_heapmin
 ¹ _debug_malloc
 ¹ _debug_realloc

In addition to their usual behavior, these functions also store information (file name
and line number) about each call made to them. Each call also automatically checks
the heap by calling _heap_check (described below).

 Chapter 15. Managing Memory 255

Memory Management

Three additional debug memory management functions do not have regular
counterparts:

 ¹ _dump_allocated

Prints information to file handle 2 (the usual destination of stderr) about each
memory block currently allocated by the debug functions. You can change the
destination of the information with the _set_crt_msg_handle function.

 ¹ _dump_allocated_delta

Prints information to file handle 2 about each memory block allocated by the
debug functions since the last call to _dump_allocated or
_dump_allocated_delta. Again, you can change the destination of the
information with the _set_crt_msg_handle function.

 ¹ _heap_check

Checks all memory blocks allocated or freed by the debug functions to make sure
that no overwriting has occurred outside the bounds of allocated blocks or in a
free memory block.

The debug functions call _heap_check automatically; you can also call it explicitly.
To use _dump_allocated and _dump_allocated_delta, you must call them
explicitly.

In C Set ++ releases prior to VisualAge C++ Version 3.0, you could not mix debug
and regular versions of the memory management functions. For example, you could
not allocate memory with malloc and free it with _debug_free. This restriction no
longer applies; realloc and free (debug or otherwise) can now handle memory
allocated by any other allocation function.

Heap-Specific Debug Functions

The heap-specific functions also have debug versions that work just like the regular
debug versions. Use these functions to allocate and free memory from the
user-created heap you specify, and also provide information that you can use to debug
memory problems in your own heaps.

Note: The information provided by these functions is Diagnosis, Modification, and
Tuning information only. It is not intended to be used as a programming
interface.

You can call them explicitly, or you can use the debug memory compiler option, /Tm,
to map calls to the heap-specific functions to their debug counterparts.

Note: If you parenthesize the calls to the heap-specific memory management
functions, they are not mapped to their debug versions.

256 VisualAge C++ Programming Guide

Memory Management

The names of the heap-specific debug versions are prefixed by _debug_u, for
example, _debug_umalloc, and they are defined in <umalloc.h>.

The functions provided are:

 ¹ _debug_ucalloc
 ¹ _debug_uheapmin
 ¹ _debug_umalloc
 ¹ _udump_allocated
 ¹ _udump_allocated_delta
 ¹ _uheap_check

Notice there is no heap-specific debug version of realloc or free. Because they
both always check what heap the memory was allocated from, you always use the
regular debug versions (_debug_realloc and _debug_free), regardless of what heap
the memory came from.

For more information about debugging memory problems in your own heaps, see
“Debugging Your Heaps” on page 273.

Tiled Debug Functions

The tiled functions also have debug versions that work just like the regular and
heap-specific debug versions. Use these functions to allocate and free memory from
the tiled VisualAge C++ runtime heap. They also provide information that you can
use to debug memory problems with the tiled heap.

Note: The information provided by these functions is Diagnosis, Modification, and
Tuning information only. It is not intended to be used as a programming
interface.

You can call them explicitly, or you can use the debug memory and tiled memory
compiler options /Tm and /Gt, to map calls to the regular memory management
functions to their tiled debug counterparts.

Note: If you parenthesize the calls to the heap-specific memory management
functions, they are not mapped to their debug versions.

The names of the tiled debug versions are prefixed by _debug_t, for example,
_debug_tmalloc, and they are defined in <malloc.h> and <stdlib.h>.

 Chapter 15. Managing Memory 257

Managing Memory with Multiple Heaps

The functions provided are:

 ¹ _debug_tcalloc
 ¹ _debug_tfree
 ¹ _debug_theapmin
 ¹ _debug_tmalloc
 ¹ _debug_trealloc
 ¹ _tdump_allocated
 ¹ _tdump_allocated_delta
 ¹ _theap_check

For more information about debugging memory problems, see “Debugging Your
Heaps” on page 273.

Managing Memory with Multiple Heaps

VisualAge C++ now gives you the option of creating and using your own pools of
memory, called heaps. You can use your own heaps in place of or in addition to the
default VisualAge C++ runtime heap to improve the performance of your program.
This section describes how to implement multiple user-created heaps using
VisualAge C++.

Note: Many readers will not be interested in creating their own heaps. Using your
own heaps is entirely optional, and your applications will work perfectly well using
the default memory management provided (and used by) the VisualAge C++ runtime
library. If you want to improve the performance and memory management of your
program, multiple heaps can help you. Otherwise, you can ignore this section and
any heap-specific library functions.

Why Use Multiple Heaps?

Using a single runtime heap is fine for most programs. However, using multiple
heaps can be more efficient and can help you improve your program's performance
and reduce wasted memory for a number of reasons:

¹ When you allocate from a single heap, you may end up with memory blocks on
different pages of memory. For example, you might have a linked list that
allocates memory each time you add a node to the list. If you allocate memory
for other data in between adding nodes, the memory blocks for the nodes could
end up on many different pages. To access the data in the list, the system may
have to swap many pages, which can significantly slow your program.

With multiple heaps, you can specify which heap you allocate from. For
example, you might create a heap specifically for the linked list. The list's
memory blocks and the data they contain would remain close together on fewer
pages, reducing the amount of swapping required.

258 VisualAge C++ Programming Guide

Managing Memory with Multiple Heaps

¹ In multithread applications, only one thread can access the heap at a time to
ensure memory is safely allocated and freed. For example, say thread 1 is
allocating memory, and thread 2 has a call to free. Thread 2 must wait until
thread 1 has finished its allocation before it can access the heap. Again, this can
slow down performance, especially if your program does a lot of memory
operations.

If you create a separate heap for each thread, you can allocate from them
concurrently, eliminating both the waiting period and the overhead required to
serialize access to the heap.

¹ With a single heap, you must explicitly free each block that you allocate. If you
have a linked list that allocates memory for each node, you have to traverse the
entire list and free each block individually, which can take some time.

If you create a separate heap for that linked list, you can destroy it with a single
call and free all the memory at once.

¹ When you have only one heap, all components share it (including the
VisualAge C++ runtime library, vendor libraries, and your own code). If one
component corrupts the heap, another component might fail. You may have
trouble discovering the cause of the problem and where the heap was damaged.

With multiple heaps, you can create a separate heap for each component, so if
one damages the heap (for example, by using a freed pointer), the others can
continue unaffected. You also know where to look to correct the problem.

You can create heaps of regular memory, tiled memory, or shared memory, and you
can have any number of heaps of any type. (See “Types of Memory” on page 265
for more information about the different types of memory for heaps.) The only limit
is the space available on your operating system (your machine's memory and swapper
size, minus the memory required by other running applications).

VisualAge C++ provides heap-specific versions of the memory management functions
(malloc and so on), and a number of new functions that you can use to create and
manage your own heaps of memory. Debug versions of all the memory management
functions are available, including the heap-specific ones. You can also use debug
versions with tiled memory and shared memory, which you couldn't do in previous
releases.

Note: Because multiple heaps and the functions that support them are extensions to
the ANSI language standard, you can only use them when the language level is set to
extended (with the /Se compiler option or #pragma langlvl(extended) directive).

The following sections describe how to create and use your own heaps. For
detailed information on each function, refer to the C Library Reference.

 Chapter 15. Managing Memory 259

Managing Memory with Multiple Heaps

Creating a Fixed-Size Heap

Before you create a heap, you need to get the block of memory that will make up the
heap. You can get this block by calling an OS/2 API (such as DosAllocMem or
DosAllocSharedMem) or by statically allocating it.

Make sure the block is large enough to satisfy all the memory requests your program
will make of it, as well as the internal information for managing the heap. Once the
block is fully allocated, further allocation requests to the heap will fail.

The internal information requires _HEAP_MIN_SIZE bytes (_HEAP_MIN_SIZE is
defined in <umalloc.h>); you cannot create a heap smaller than this. Add the amount
of memory your program requires to this value to determine the size of the block you
need to get.

Also make sure the block is the correct type (regular, tiled, or shared) for the heap
you are creating.

Once you have the block of memory, create the heap with _ucreate.

For example:

Heap_t fixedHeap; /* this is the "heap handle" */
/* get memory for internal info plus 5000 bytes for the heap */
static char *block[_HEAP_MIN_SIZE + 5000];

fixedHeap = _ucreate(block, (_HEAP_MIN_SIZE+5000), /* block to use */
!_BLOCK_CLEAN, /* memory is not set to 0 */
_HEAP_REGULAR, /* regular memory */
NULL, NULL); /* we'll explain this later */

The !_BLOCK_CLEAN parameter indicates that the memory in the block has not
been initialized to 0. If it were set to 0 (for example, by DosAllocMem or memset),
you would specify _BLOCK_CLEAN. The calloc and _ucalloc functions use this
information to improve their efficiency; if the memory is already initialized to 0, they
don't need to initialize it.

Note: DosAllocMem initializes memory to 0 for you. You can also use memset to
initialize the memory; however, memset also commits all the memory at once, which
could slow overall performance.

The fourth parameter indicates what type of memory the heap contains: regular
(_HEAP_REGULAR), tiled (_HEAP_TILED), or shared (_HEAP_SHARED). The
different memory types are described in “Types of Memory” on page 265.

For a fixed-size heap, the last two parameters are always NULL.

260 VisualAge C++ Programming Guide

Managing Memory with Multiple Heaps

Using Your

Heap

Once you have created your heap, you need to open it for use by calling _uopen:

 _uopen(fixedHeap);

This opens the heap for that particular process; if the heap is shared, each process that
uses the heap needs its own call to _uopen.

You can then allocate and free from your own heap just as you would from the
default heap. To allocate memory, use _ucalloc or _umalloc. These functions
work just like calloc and malloc, except you specify the heap to use as well as the
size of block that you want. For example, to allocate 1000 bytes from fixedHeap:

 void *up;
up = _umalloc(fixedHeap, 1000);

To reallocate and free memory, use the regular realloc and free functions. Both of
these functions always check what heap the memory came from, so you don't need to
specify the heap to use. For example, in the following code fragment:

void *p, *up;
p = malloc(1000); /* allocate 1000 bytes from default heap */
up = _umalloc(fixedHeap, 1000); /* allocate 1000 from fixedHeap */

realloc(p, 2000); /* reallocate from default heap */
realloc(up, 100); /* reallocate from fixedHeap */

free(p); /* free memory back to default heap */
free(up); /* free memory back to fixedHeap */

the realloc and free calls look exactly the same for both the default heap and your
heap.

For any object, you can find out what heap it was allocated from by calling _mheap.
You can also get information about the heap itself by calling _ustats, which tells
you:

¹ How much memory the heap holds (excluding memory used for overhead)
¹ How much memory is currently allocated from the heap
¹ What type of memory is in the heap
¹ The size of the largest contiguous piece of memory available from the heap

When you call any heap function, make sure the heap you specify is valid. If the
heap is not valid, the behavior of the heap functions is undefined.

Adding to a

Fixed-Size

Heap

Although you created the heap with a fixed size, you can add blocks of memory
to it with _uaddmem. This can be useful if you have a large amount of memory that
is allocated conditionally. Like the starting block, you must first get the block to add

 Chapter 15. Managing Memory 261

Managing Memory with Multiple Heaps

to the heap by using an OS/2 API or by allocating it statically. Make sure the block
you add is the same type of memory as the heap you are adding it to.

For example, to add 64K to fixedHeap:

 void *newblock;
/* get memory block from operating system */
DosAllocMem(newblock, 65536, PAG_COMMIT | PAG_WRITE | PAG_READ);

_uaddmem(fixedHeap, /* heap to add to */
newblock, 65536, /* block to add */
_BLOCK_CLEAN); /* DosAllocMem sets memory to 0 */

Using _uaddmem is the only way to increase the size of a fixed heap.

Note: For every block of memory you add, a small number of bytes from it are used
to store internal information. To reduce the total amount of overhead, it is better to
add a few large blocks of memory than many small blocks.

Destroying

Your Heap

When you have finished using the heap, close it with _uclose. Once you have
closed the heap in a process, that process can no longer allocate from or return
memory to that heap. If other processes share the heap, they can still use it until you
close it in each of them. Performing operations on a heap after you've closed it
causes undefined behavior.

To finally destroy the heap, call _udestroy. If blocks of memory are still allocated
somewhere, you can force the destruction. Destroying a heap removes it entirely
even if it was shared by other processes. Again, performing operations on a heap
after you've destroyed it causes undefined behavior.

After you destroy your fixed-size heap, it is up to you to return the memory for the
heap (the initial block of memory you supplied to _ucreate and any other blocks
added by _uaddmem) to the system.

Creating an Expandable Heap

With a fixed-size heap, the initial block of memory must be large enough to satisfy
all allocation requests made to it. In this section, we will create a heap that can
expand and contract.

With the VisualAge C++ runtime heap, when not enough storage is available for your
malloc request, the runtime gets additional storage from the system. Similarly, when
you minimize the heap with _heapmin or when your program ends, the runtime
returns the memory to the operating system.

When you create an expandable heap, you provide your own functions to do this
work (we'll call them getmore_fn and release_fn, although you can name them

262 VisualAge C++ Programming Guide

Managing Memory with Multiple Heaps

whatever you choose). You specify pointers to these functions as the last two
parameters to _ucreate (instead of the NULL pointers you used to create a fixed-size
heap). For example:

 Heap_t growHeap;
static char *block[_HEAP_MIN_SIZE]; /* get block */

growHeap = _ucreate(block, _HEAP_MIN_SIZE, /* starting block */
!_BLOCK_CLEAN, /* memory not set to 0 */
_HEAP_REGULAR, /* regular memory */
getmore_fn, /* function to expand heap */
release_fn); /* function to shrink heap */

Note: You can use the same getmore_fn and release_fn for more than one heap,
as long as the heaps use the same type of memory and your functions are not written
specifically for one heap.

Expanding

Your Heap

When you call _umalloc (or a similar function) for your heap, _umalloc tries to
allocate the memory from the initial block you provided to _ucreate. If not enough
memory is there, it then calls your getmore_fn. Your getmore_fn then gets more
memory from the operating system and adds it to the heap. It is up to you how you
do this.

Your getmore_fn must have the following prototype:

void *(*getmore_fn)(Heap_t uh, size_t *size, int *clean);

The uh is the heap to be expanded.

The size is the size of the allocation request passed by _umalloc. You probably
want to return enough memory at a time to satisfy several allocations; otherwise
every subsequent allocation has to call getmore_fn, reducing your program's
execution speed. We recommend you return multiples of 64K (the smallest size that
DosAllocMem returns). Make sure that you update the size parameter. if you return
more than the size requested.

Your function must also set the clean parameter to either _BLOCK_CLEAN, to
indicate the memory has been set to 0, or !_BLOCK_CLEAN, to indicate that the
memory has not been initialized.

The following fragment shows an example of a getmore_fn:

 Chapter 15. Managing Memory 263

Managing Memory with Multiple Heaps

static void *getmore_fn(Heap_t uh, size_t *length, int *clean)
 {
 char *newblock;

/* round the size up to a multiple of 64K */
*length = (*length / 65536) * 65536 + 65536;

DosAllocMem(&newblock, *length, PAG_COMMIT | PAG_READ | _PAG_WRITE);

clean = _BLOCK_CLEAN; / mark the block as "clean" */
return(newblock); /* return new memory block */

 }

Note: Be sure that your getmore_fn allocates the right type of memory (regular,
tiled, or shared) for the heap. There are also special considerations for shared
memory, described under “Types of Memory” on page 265.

You can also use _uaddmem to add blocks to your heap, as you did for the fixed heap
in “Adding to a Fixed-Size Heap” on page 261. _uaddmem works exactly the same
way for expandable heaps.

Shrinking

Your Heap

To coalesce the heap (return all blocks in the heap that are totally free to the
system), use _uheapmin. _uheapmin works like _heapmin, except that you specify
the heap to use.

When you call _uheapmin to coalesce the heap or _udestroy to destroy it, these
functions call your release_fn to return the memory to the system. Again, it is up
to you how you implement this function.

Your release_fn must have the following prototype:

void (*release_fn)(Heap_t uh, void *block, size_t size);

Where uh identifies the heap to be shrunk. The pointer block and its size are
passed to your function by _uheapmin or _udestroy. Your function must return the
memory pointed to by block to the system. For example:

static void release_fn(Heap_t uh, void *block, size_t size)
 {
 DosFreeMem(block);
 return 0;
 }

264 VisualAge C++ Programming Guide

Managing Memory with Multiple Heaps

Notes:

1. _udestroy calls your release_fn to return all memory added to the uh heap by
your getmore_fn or by _uaddmem. However, you are responsible for returning
the initial block of memory that you supplied to _ucreate.

2. Because a fixed-size heap has no release_fn, _uheapmin and _udestroy work
slightly differently. Calling _uheapmin for a fixed-size heap has no effect but
does not cause an error; _uheapmin simply returns 0. Calling _udestroy for a
fixed-size heap marks the heap as destroyed, so no further operations can be
performed on it, but returns no memory. It is up to you to return the heap's
memory to the system.

Types of Memory

There are three different types of memory:

 1. Regular

Most programs use regular memory. This is the type provided by the default
runtime heap.

 2. Tiled

Tiled memory is guaranteed not to cross 64K boundaries (as long as the object
being allocated is less than 64K), so it is appropriate for objects that may be
accessed by 16-bit code. If you want to use tiled memory, make sure you
specify that type when you get the initial block for your heap, when you create
the heap, and when you add to your heap (with _uaddmem or your getmore_fn).
Even if you use tiled memory, you still need to specify the /Gt compiler option
to ensure your objects are correctly aligned.

Note: When you use /Gt+, the regular versions of the memory management
functions (that use the default heap) are mapped to tiled versions so that they also
return tiled memory. If you parenthesize the function calls, they are not mapped
to the tiled versions and therefore return regular memory. However, if you
replace the default runtime heap with your own tiled heap, all regular memory
management functions will use the new default heap of tiled memory, regardless
of whether the calls are parenthesized. There are no tiled versions of the
heap-specific functions; to use tiled memory, create a tiled heap and specify it
when you call the functions.

 3. Shared

Heaps of shared memory can be shared between processes or applications. If you
want other processes to use the heap you have created, you must pass them the
heap handle and give them access to the heap.

To correctly share a heap, you must observe certain requirements, described
below. Meeting these requirements is entirely your responsibility.

 Chapter 15. Managing Memory 265

Managing Memory with Multiple Heaps

For a fixed-size shared heap, you must:

¹ Allocate the starting block of memory as shared memory.
¹ Ensure that all processes that use the heap (allocate or free memory

from it) or that use shared data from the heap ("interested" processes)
have access to the starting block.

¹ Pass the heap handle to each process that uses the heap ("interested"
processes do not need the heap handle).

¹ Call _uopen for the heap in each process that uses it.
¹ Call _uclose in each process where you called _uopen before you

destroy the heap.

If you use _uaddmem to expand your heap, you must ALSO:

¹ Ensure that all interested and using processes have access to the new
block added by _uaddmem.

If you use getmore_fn and release_fn to dynamically expand and shrink

your heap, you must ALSO:

¹ Ensure that all interested and using processes have access to the new
block added by getmore_fn, no matter which process called
getmore_fn.

¹ Ensure that getmore_fn can run successfully in any process that may
call a heap-specific allocation function (such as _umalloc) or cause it
to be called; and that release_fn can run successfully in any process
that may call _uheapmin or _udestroy or cause them to be called.
Typically this would mean placing both getmore_fn and release_fn
in a DLL that is loaded by all processes that use the heap handle. Any
data these functions use must also be shared.

¹ Ensure that release_fn revokes the access of each process to a shared
memory block before it returns that block to the system.

 For more information about managing shared memory and OS/2 APIs you
can use, see the section on Shared Memory in the Control Program Guide and

Reference.

Changing the Default Heap

The regular memory management functions (malloc and so on) always use whatever
heap is currently the default for that thread. The initial default heap for all
VisualAge C++ applications is the runtime heap provided by VisualAge C++.
However, you can make your own heap the default by calling _udefault. Then all
calls to the regular memory management functions allocate from your heap instead of
the runtime heap.

The default heap changes only for the thread where you call _udefault. You can
use a different default heap for each thread of your program if you choose.

266 VisualAge C++ Programming Guide

Managing Memory with Multiple Heaps

This is useful when you want a component (such as a vendor library) to use a heap
other than the VisualAge C++ runtime heap, but you can't actually alter the source
code to use heap-specific calls. For example, if you set the default heap to a tiled or
shared heap then call a library function that calls malloc, the library allocates storage
in tiled or shared memory.

Because _udefault returns the current default heap, you can save the return value
and later use it to restore the default heap you replaced. You can also change the
default back to the VisualAge C++ runtime heap by calling _udefault and
specifying _RUNTIME_HEAP (defined in <malloc.h>). You can also use this macro
with any of the heap-specific functions to explicitly allocate from the runtime heap.

A Simple Example of a User Heap

The following program shows very simply how you might create and use a heap.

/* the function _umalloc calls to get more storage */
static void *get_fn(Heap_t uh, size_t *length, int *clean)
{
 char *p;

/* DosAllocMem sets storage to 0, so it is "clean" */
*clean = _BLOCK_CLEAN;

/* round the block size to a multiple of 64K for efficiency */
*length = (*length / 65536) * 65536 + 65536;

/* get the storage from the system)
DosAllocMem(&p, *length, PAG_COMMIT|PAGE_READ|PAGE_WRITE);

 return p;
}

Figure 25 (Part 1 of 3). Example of a User Heap

 Chapter 15. Managing Memory 267

Managing Memory with Multiple Heaps

/* the function _heapmin and _destroy
call to return storage to the system */

static void release_fn(Heap_t uh, void *p, size_t size)
{
 DosFreeMem(p);
 return;
}

int main(void)
{
 Heap_t myheap;

/* startchunk will be the first block of storage on the heap */
 char startchunk[_HEAP_MIN_SIZE];
 void *p;

/* create a heap starting with the block declared earlier */
myheap = _ucreate(startchunk, _HEAP_MIN_SIZE,

!_BLOCK_CLEAN, /* memory is not set to 0 */
_HEAP_REGULAR, /* regular memory */

 get_fn, release_fn);

if (myheap == NULL) /* check that valid heap was created */
 puts("create failed");

if (_open(myheap)) /* open heap and check for failure */
 puts("open failed");

/* allocate from myheap; if necessary, _umalloc calls get_fn */
_umalloc calls get_fn

p = _umalloc(myheap, 1000);
if (p == NULL) /* check that allocation worked */

 puts("allocation failed");

p = realloc(p, 100); /* reallocate from myheap - realloc knows
what heap the storage came from */

 free(p); /* free also knows what heap the storage came from */

/* return unused blocks to system; _heapmin calls release_fn */
 _uheapmin(myheap);

Figure 25 (Part 2 of 3). Example of a User Heap

268 VisualAge C++ Programming Guide

Managing Memory with Multiple Heaps

_uclose(myheap); /* close myheap */

/* destroy myheap with FORCE because some storage is still
allocated; _udestroy calls release_fn to return storage */

 _udestroy(myheap, FORCE);
 return 0;
}

Figure 25 (Part 3 of 3). Example of a User Heap

A More Complex Example Featuring Shared Memory

The following program shows how you might implement a heap shared between a
parent and several child processes.

Figure 26 shows the parent process, which creates the shared heap. First the main
program calls the init function to allocate shared memory from the operating system
(using DosAllocSharedMem) and name the memory so that other processes can use it
by name. The init function then creates and opens the heap. The loop in the main
program performs operations on the heap, and also starts other processes. The
program then calls the term function to close and destroy the heap.

#include <umalloc.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define INCL_DOSMEMMGR
#include <os2.h>

Figure 26 (Part 1 of 4). Example of a Shared User Heap - Parent Process

 Chapter 15. Managing Memory 269

Managing Memory with Multiple Heaps

/* Function to create and open the heap with a named shared memory object */
static int inithp(Heap_t *uheap, void **init_block)
{

int flags; /* to store flags for DosAllocMem */
void *p; /* to point to the shared memory */
const size_t size = 65536; /* always allocate 64K */
flags = PAG_COMMIT | PAG_WRITE | PAG_READ;

/* allocate shared memory from system */
if (DosAllocSharedMem(&p, /* assign memory block to p */

"\\SHAREMEM\\MYNAME", /* name memory block */
 size, flags))
 return 1;
 else
 {

*uheap = _ucreate((char *)p + sizeof(Heap_t), /* heap handle goes at start */
size - sizeof(Heap_t), /*block size,space for heap handle */
_BLOCK_CLEAN, /* DosAllocSharedMem sets memory to 0 */
_HEAP_SHARED | _HEAP_REGULAR, /* shared or regular heap */
NULL, NULL); /* fixed size */

if (*uheap = NULL) /* check heap was created */
 return 1;

memcpy(p, uheap, sizeof(Heap_t)); /* store heap handle in shared area */
 }

if (_uopen(*uheap)) /*open heap and check result */
 return 1;

*init_block = p; /*make initial block point to shared memory */
 return 0;
}

/* Function to close and destroy the heap */
static int term(Heap_t uheap, void init_block)
{

if (_uclose(uheap)) /* close heap */
 return 1;

Figure 26 (Part 2 of 4). Example of a Shared User Heap - Parent Process

270 VisualAge C++ Programming Guide

Managing Memory with Multiple Heaps

if (_udestroy(uheap, FORCE)) /* force destruction of heap */
 return 1;

DosFreeMem(init_block); /* return memory to system */
 return 0;
}

int main(void)
{

int rc, a; /* for return codes, loop iteration */
Heap_t uheap; /* heap to create */
void *init_block; /* initial block to use */
char *p; /* for allocating from heap */

/* call init function to create and open the heap */
rc = init(&uheap, &init_block);

if (rc) /* check for success (0) or failure (1) */
return rc; /* if failure, program ends */

/* perform operations on uheap */
for (a = 1; a < 10; a++)

 {
p = _umalloc(uheap, 10); /* allocate from uheap */
if (p == NULL)

 return 1;
memset(p, 'M', _msize(p)); /* set all bytes in p to 'M' */

if (system("sample1b.exe")) /*start new process and check result */

p = realloc(p,50); /* reallocate from uheap */
if (p == NULL)

 return 1;
memset(p, 'R', _msize(p)); /* set all bytes in p to 'R' */

 }

Figure 26 (Part 3 of 4). Example of a Shared User Heap - Parent Process

 Chapter 15. Managing Memory 271

Managing Memory with Multiple Heaps

/* call term function to close and destroy the heap */
rc = term(uheap, init_block);

puts("Sample 1 ending...");
 return rc;
}

Figure 26 (Part 4 of 4). Example of a Shared User Heap - Parent Process

Figure 27 shows the process started by the loop in the parent process. This process
uses DosGetSharedMem to access the shared memory by name, then extracts the heap
handle for the heap created by the parent process. The process then opens the heap,
makes it the default heap, and performs some operations on it in the loop. After the
loop, the process replaces the old default heap, closes the user heap, and ends.

#include <umalloc.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#define INCL_DOSMEMMGR
#include <os2.h>

int main(void)
{

int rc, a; /* for return code, loop iteration */
Heap_t uheap, oldheap; /* heap to create, old default heap */
void *init_block; /* to point to the shared memory */
char *p; /* for allocating from the heap */

/* get the named shared memory block and check result */
if (DosGetNamedSharedMem(&init_block, /* assign to init_block */

"\\SHAREMEM\\MYNAME", /* name of memory */
PAG_READ | PAG_WRITE)) /* flags */

 return 1;

Figure 27 (Part 1 of 2). Example of a Shared User Heap - Child Process

272 VisualAge C++ Programming Guide

Debugging Your Heaps

/* extract heap handle from shared memory and assign to uheap */
memcpy(&uheap, init_block, sizeof(Heap_t));

if (_uopen(uheap)) /* open heap and check result */
 return 1;

/* register uheap as default runtime heap, save old default */
oldheap = _udefault(uheap);
if (oldheap == NULL)

 return 1;

/* perform operations on uheap */
for (a = 1; a < 10; a++)

 {
p = malloc(10); /* malloc uses default heap, which is now uheap */
memset(p, 'M', _msize(p));

 free(p);
 }

/* replace original default heap and check result */
if (uheap != _default(oldheap))

 return 1;

if (_uclose(uheap)) /* close the heap for this process */
 return 1;

 return 0;

Figure 27 (Part 2 of 2). Example of a Shared User Heap - Child Process

Debugging Your Heaps

VisualAge C++ provides two sets of functions for debugging your memory problems:

1. Debug versions of all memory management functions

2. Heap-checking functions similar to those provided by other compilers.

Debug Memory Management Functions

Debug versions of the heap-specific memory management functions are provided, just
as they are for the regular versions. Each debug version performs the same function
as its non-debug counterpart. In addition, the debug version calls _uheap_check to
check the heap used in the call, and records the file and line number where the

 Chapter 15. Managing Memory 273

Debugging Your Heaps

memory was allocated or freed. You can then use _dump_allocated or
_dump_allocated_delta to display information about currently allocated memory
blocks. Information is printed to stderr; you can change the destination with the
_set_crt_msg_handle function.

You can use debug memory management functions for any type of heap, including
tiled and shared memory. To use the debug versions, specify the Debug Memory
compiler option, /Tm. The VisualAge C++ compiler then maps all calls to memory
management functions (regular or heap-specific) to the corresponding debug version.

Note: If you parenthesize the name of a memory management function, the function
is not mapped to the debug version. This does not apply to the C++ new and delete
functions, which are mapped to their debug versions regardless of parentheses.

Prior to Version 2.1 of VisualAge C++, debug memory management functions and
tiled memory functions (for example, _tmalloc) were not compatible. You can now
specify both /Gt and /Tm together, to map regular memory management functions to
tiled debug versions (for example, _debug_tmalloc).

Another restriction in earlier versions of VisualAge C++ was that you could not mix
debug and non-debug memory management functions, meaning you could not allocate
with a regular function and then free the object with the debug version. This
restriction no longer exists.

Skipping

Heap Checks

As stated above, each debug function calls _heap_check (or _uheap_check) to
check the heap. Although this is useful, it can also increase your program's memory
requirements and decrease its execution speed.

To reduce the overhead of checking the heap on every debug memory management
function, you can control how often the functions check the heap with the
DDE4_HEAP_SKIP environment variable. This is not required in most applications
unless the application is extremely memory intensive.

Set DDE4_HEAP_SKIP with the SET command, like any other environment variable.
You can set it either in CONFIG.SYS, from the command line, or in your project.
The syntax for DDE4_HEAP_SKIP is:

SET DDE4_HEAP_SKIP= increment, [start]

increment specifies how often you want the debug functions to check the heap. In
the above statement, the comma is optional. The start parameter is also optional;
you can use it to start skipping heap checks after start calls to debug functions.

When you use start parameter to start skipping heap checks, you are trading off
heap checks that are done implicitly against program execution speed. You should

274 VisualAge C++ Programming Guide

Debugging Your Heaps

therefore start with a small increment (like 5) and slowly increase until the
application is usable.

For example, if you specify:

SET DDE4_HEAP_SKIP= 10

then every tenth debug memory function call performs a heap check. If you specify:

SET DDE4_HEAP_SKIP= 5, 100

then after 100 debug memory function calls, only every fifth call performs a heap
check. Other than the heap check, the debug functions behave exactly the same as
usual.

 Heap-Checking Functions

VisualAge C++ also provides some new functions for validating user heaps:
_uheapchk, _uheapset, and _uheap_walk (Each of these functions has a
non-heap-specific version that validates the default heap.)

Both _uheapchk and _uheapset check the specified heap for minimal consistency;
_uheapchk checks the entire heap, while _uheapset checks only the free memory.
_uheapset also sets the free memory in the heap to a value you specify.
_uheap_walk traverses the heap and provides information about each allocated or
freed object to a callback function that you provide. You can then use the
information however you like.

These heap-checking functions are defined in <umalloc.h> (the regular versions are
also in <malloc.h>). They are not controlled by a compiler option, so you can use
them in your program at any time.

Which Should I Use?

Both sets of debugging functions have their benefits and drawbacks. Which you
choose to use depends on your program, your problems, and your preference.

The debug memory management functions provide detailed information about all
allocation requests you make with them in your program. You don't need to change
any code to use the debug versions; you need only specify the /Tm compiler option.
However, because only calls that have been mapped to debug versions provide any
information, you may have to rebuild many or all of your program's modules, which
can be time-consuming.

On the other hand, the heap-checking functions perform more general checks on the
heap at specific points in your program. You have greater control over where the

 Chapter 15. Managing Memory 275

Debugging Your Heaps

checks the occur. The heap-checking functions also provide compatibility with other
compilers that offer these functions. You only have to rebuild the modules that
contain the heap-checking calls. However, you have to change your source code to
include these calls, which you will probably want to remove in your final code. Also,
the heap-checking functions only tell you if the heap is consistent or not; they do not
provide the details that the debug memory management functions do.

What you may choose to do is add calls to heap-checking functions in places you
suspect possible memory problems. If the heap turns out to be corrupted, at that
point you may want to rebuild with the /Tm option.

Note: When the debug memory option /Tm is specified, code is generated to
pre-initialize the local variables for all functions. This makes it much more likely
that uninitialized local variables will be found during the normal debug cycle rather
than much later (usually when the code is optimized).

Regardless of which debugging functions you choose, your program requires
additional memory to maintain internal information for these functions. If you are
using fixed-size heaps, you may have to increase the heap size in order to use the
debugging functions.

For more information on the debug memory management functions and how to use
them, see “Debug Functions” on page 255.

276 VisualAge C++ Programming Guide

SOM

16 The IBM System Object Model

The IBM System Object Model (SOM) provides a common programming interface
for building and using objects. SOM improves your C++ programming productivity
in two ways:

¹ If you develop or maintain libraries of C++ classes and methods that are used by
other application developers, SOM allows you to release new versions of a
library without requiring users of the library to recompile their applications.

¹ SOM lets you make your C++ classes and objects accessible to programs written
in other languages, and to write C++ programs that use classes and objects
created using other SOM-supported languages.

You can make classes and methods in existing C++ programs SOM-accessible without
having to rewrite class and method definitions. Although SOM imposes some
restrictions on C++ coding conventions, you should be able to convert most C++
programs for SOM support with minimal effort. VisualAge C++ can convert existing
C++ classes to SOM classes. This method of creating SOM classes is sometimes
referred to as the Direct-to-SOM or DTS method, and a Direct-to-SOM or DTS class
is one that has been converted to SOM by the compiler.

For information on how you can have the compiler convert classes to SOM, see
“Converting C++ Programs to SOM Using SOMAsDefault” on page 307 and
“Creating SOM-Compliant Programs by Inheriting from SOMObject” on page 308.

This chapter does not describe the entire scope of SOM. For more detail on SOM,
see the online SOM Programming Guide and the online SOM Programming

Reference.

What is SOM?

SOM defines an interface between programs, or between libraries and programs, so
that an object's interface is separated from its implementation. SOM allows classes of
objects to be defined in one programming language and used in another, and it allows
libraries of such classes to be updated without requiring client code to be recompiled.

A SOM library consists of a set of classes, methods, static functions, and data
members. Programs that use a SOM library can create objects of the types defined in
the library, use the methods defined for an object type, and derive subclasses from
SOM classes, even if the language of the program accessing the SOM library does
not support class typing. A SOM library and the programs that use objects and
methods of that library need not be written in the same programming language. SOM

 Copyright IBM Corp. 1992, 1995 277

SOM

also minimizes the impact of revisions to libraries. If a SOM library is changed to
add new classes or methods, or to change the internal implementation of classes or
methods, you can still run a program that uses that library without recompiling. This
is not the case for all other C++ libraries, which in some cases require recompilation
of all programs that use them whenever the libraries themselves are changed.

SOM provides an Application Programming Interface (API) that gives programs
access to information about a SOM class or SOM object. Any SOM class inherits a
set of virtual methods that can be used, for example, to find the class name of an
object, or to determine whether a particular method is available for an object.
These API functions are fully described in the online SOM Programming Guide.

You can make your C++ classes and methods SOM-accessible in one of two ways:
by using pragmas to direct the compiler in generating a SOM interface for your code,
or by explicitly deriving your classes from SOMObject. Both of these techniques are
described later in this chapter. In both cases, VisualAge C++ can also generate
Interface Definition Language (IDL) files which are required to make your C++ SOM
classes accessible to non-C++ programs. For further details see “Interface Definition
Language (IDL) Considerations” on page 291.

Once you have a SOM-compliant version of your library, you can add methods,
types, and subtypes to that library, or change the implementation of methods, without
requiring programs that use your library to be recompiled. These programs need only
be recompiled if they themselves are modified, for example to make use of newly
defined types or methods. See “SOM and Upward Binary Compatibility of Libraries”
on page 280 for further details.

SOM and CORBA

SOM complies with the Common Object Request Broker Architecture (CORBA)
standard defined by the Object Management Group. CORBA is an industry-wide
standard for the management of objects across heterogeneous, distributed systems.

The Cost of Using SOM

SOM is a powerful tool, but the flexibility that it gives you comes at a price. A
program that is SOM-enabled may run more slowly than an equivalent one in native
C++. You should weigh the many benefits of SOM against the negative effect it may
have on the performance of your program.

SOM and DSOM

Distributed SOM (DSOM) is an extension of SOM that permits the creation of client
programs capable of calling the methods of remote SOM objects. Such method calls
are entirely transparent to both the client and the server. When you compile your
C++ classes with SOM support, those classes can be used/in DSOM applications.

278 VisualAge C++ Programming Guide

Interface Definition Language

For further details on DSOM, see “Using SOM Classes in DSOM Applications” on
page 309.

What is DTS?

If you are an experienced SOM programmer who has used earlier versions of SOM
from C or C++ programs, you know that SOM defines bindings for those languages.
The language bindings consist of a number of macros plus structure or class
definitions in header files with the extensions .h and .ih (for C) and .xh and xih
(for C++). They are generated for a particular SOM class by running the SOM
Compiler sc.exe on the .idl file for that class interface. The bindings can be used
with a wide range of C and C++ compilers and do not require special compiler
support.

Direct-to-SOM (DTS) is a new and much more flexible way of using SOM in a C++
program. DTS class definitions resemble regular C++ classes, and you can either
write them directly or use sc.exe to generate them into files with an .hh extension
from existing IDL. DTS C++ class definitions can only be used with C++ compilers
like VisualAge C++ that support DTS.

DTS provides the same access to SOM functionality that the C++ bindings do but, in
addition, DTS supports far more of the C++ language. DTS supports member
operators, conversion functions, user-defined new and delete operators, function
overloading, stack local SOM objects, and first-class source debugging support for
SOM classes. You can write and subclass your DTS classes directly and may never
need to write a line of IDL.

VisualAge C++ supports DTS C++, but still can be used with C and C++ bindings.
SOM DLLs and EXEs can interoperate freely whether constructed using C bindings,
C++ bindings, or DTS C++.

Warning: Within one single C++ compilation, it is not possible to use both C++
bindings and DTS. A useful rule of thumb is that if you include any .xh header files
in your compilation, you must not also include any .hh files, or use the
SOMAsDefault pragma or the /Ga option.

Interface Definition Language

The Interface Definition Language (IDL) is a language-independent notation for
specifying the interfaces of SOM objects. It is required for implementing DSOM
classes, and when making your C++ SOM classes accessible from other languages.
VisualAge C++ generates an IDL description of your SOM classes for you. For
more information about IDL, see the online SOM Programming Guide.

 Chapter 16. The IBM System Object Model 279

Upward Binary Compatibility of Libraries

SOM and Upward Binary Compatibility of Libraries

This section is intended for programmers who are developing or maintaining libraries
containing C++ class and object definitions. This section does not describe how to
write programs that use a SOM-compliant library.

When you make changes to a SOM library that contains C++ class and method
definitions, programs that use your library may or may not need to be recompiled in
order to work with the new version of the library. Changes to your library that may

not require recompilation of client programs include:

¹ Adding new classes, including base classes
¹ Adding new methods or data members to existing classes
¹ Changing or removing private methods or data members from classes
¹ Changing the internal implementation of public or protected methods
¹ Moving member functions from a derived class to a base class.

 For more detail on such changes, see the online SOM Programming Guide and
the online SOM Programming Reference.

If you change your library only in the ways described above, and you follow the rules
described in Release Order of SOM Objects, you can provide the new library to your
users in binary form, and their programs will work with the new library without
needing to be recompiled, or even relinked if the library is a dynamically linked
library.

Changes to your library that will require recompilation of client programs include:

 ¹ Removing classes
¹ Removing public data members, methods, or static member functions from

existing classes.

In the context of the above list, removing also includes renaming. Renaming an item
from a library is equivalent to removing the item and adding a new item with the
same characteristics. If you use the SOMMethodName or SOMClassName pragmas to
provide a SOM name for a C++ method or class, changing the SOM name has the
same effect as renaming the C++ method or class name.

Note that if you add the SOMMethodName or SOMNoMangling pragmas for a method
this also changes the SOM name from that supplied by the compiler to that specified
by the pragma. If there is any likelihood of non-C++ programs using your SOM
classes, use these pragmas for your initial implementation.

The remainder of this section describes details of how SOM provides upward binary
compatibility of libraries. You do not need to know this information to create or
maintain SOM-compliant libraries, but the information will help you understand when

280 VisualAge C++ Programming Guide

Upward Binary Compatibility of Libraries

and why certain SOM pragmas are used (specifically, SOMReleaseOrder and
SOMClassVersion).

Release Order of SOM Objects

SOM achieves binary compatibility by arranging all the components of a class into
ordered lists, locating them by their position in a list, and by enforcing rules to ensure
that the ordering of the lists never changes. There are three lists maintained for each
class. Two lists are for instance data, and one is for member functions.

The first list is for public instance data. The ordering in this list is the declaration
order of the public instance data in the class. The corresponding rule that preserves
this order and ensures binary upward compatibility is that the declaration order must
not change, and that new public data members must be added after all preexisting
public members.

The second list is for protected and private instance data. This list is ordered and the
order preserved in exactly the same manner as for the public instance data list.

Adding new public or protected data members only forces you to recompile clients
that need to use the new data.

Deleting or reordering public data members will break binary compatibility, and
require recompilation of all clients and derived classes. Deleting or reordering
protected data members will require recompilation of derived classes, but not of
clients since they did not have access to the protected data.

The third ordered list is a list of all member functions introduced by the class (both
static and nonstatic), plus any static data members in the class.

Virtual functions that override virtual functions in base classes do not appear in this
list, but do appear in the list belonging to the base class that introduced them. As a
special case of this rule, a class's default constructor, copy constructor, destructor, and
default assignment operator are all treated as overrides of virtual functions introduced
by SOMObject, and so do not appear in the derived class's list.

This third list, called the "release order", is determined in one of two ways. The
simpler way is the declaration order of the member functions and static data
members, and the resulting compatibility rule is that once again new members must
be added after all others in the class declaration. Note that for the purposes of this
rule, attributes created using the SOMAttribute pragma behave as though declarations
of the _get and _set methods appeared in place of the data declaration. See “The
SOMAttribute Pragma” on page 315 and “set and get Methods for Attribute Class
Members” on page 290 for more information.

 Chapter 16. The IBM System Object Model 281

Upward Binary Compatibility of Libraries

Note also that this third list contains all member functions and static data members,
whether their access is public, protected, or private. This sometimes makes the
compatibility rule overly constraining to a class designer, who may prefer to group
the member function declarations logically or by access, or even to omit private
methods from the class declaration provided to clients of the class. For this reason,
VisualAge C++ provides a pragma that can be used to explicitly specify the release
order for a class. If the SOMReleaseOrder pragma is used for a class, then the
declaration order of member functions is no longer significant, and the compatibility
rule is changed to require that new members be added at the end of the pragma.

// Original Class Definition:
#pragma SOMAsDefault(on) // define ensuing classes as SOM
class Bicycle {
 public:
 int Model;

static int Count;
Bicycle(); // defined elsewhere
void showBicycle(); // defined elsewhere

#pragma SOMAttribute(Model,publicdata)
#pragma SOMReleaseOrder(\
 Model, \
 Count,\
 showBicycle()))
};
#pragma SOMAsDefault(pop) // resume prior setting of SOMAsDefault

In the revised version below, new methods and static data members are specified after

the existing methods, within the SOMReleaseOrder pragma. Whether you place the
declarations for the new methods and static data members before or after existing
ones is not important, as long as you use SOMReleaseOrder to maintain the positions
of existing functions in the release order:

282 VisualAge C++ Programming Guide

Upward Binary Compatibility of Libraries

// Revision:
#pragma SOMAsDefault(on)
class Bicycle {
 public:
 int Model;

static int Count;
static int NumberSold;

 Bicycle();
 void showBicycle();

int sellBicycle(int); // defined elsewhere
#pragma SOMAttribute(Model,publicdata)
#pragma SOMReleaseOrder(\
 Model, \
 Count, \
 showBicycle()), \
 NumberSold, \
 sellBicycle(int))
};
#pragma SOMAsDefault(pop)

Note that in the example above, it is not necessary to specify the argument type (int)
for sellBicycle(). If sellBicycle() were overloaded with multiple argument
types (for example, sellBicycle(int) and sellBicycle(int,char*)), you would
need to specify both overloads of the function in SOMReleaseOrder.

You can use the /Fr (give the release order of a class) option to have the compiler
generate a #pragma SOMReleaseOrder for a class. For further details see “The
SOMReleaseOrder Pragma” on page 333.

Default

Release

Order Rules

If you do not specify a release order for a class, the compiler orders methods
(including the get and set methods of SOM attributes) in the order of their appearance
within the class definition.

As long as you follow the guidelines given in this section (do not remove any public
or protected methods or data members, and do not reorder previously released
methods or static data members), you can provide new releases of your library and
the programs that use that library will not need to be recompiled. Even if you are
providing the library only to C++ programs and do not require SOM's ability to allow
cross-language sharing of class and method definitions, this freedom from
recompilation gives you more room to make minor adjustments or major
enhancements to your library, and it decreases the resistance that those using the
library might otherwise have to installing new versions of the library.

 Chapter 16. The IBM System Object Model 283

Upward Binary Compatibility of Libraries

Version Control for SOM Libraries and Programs

The release order of a class's data members, methods, and static member functions
enables SOM client programs to work with new versions of SOM libraries without
being recompiled. This means that a library can be recompiled after client programs
have already been compiled and linked to an earlier version of the library. However,
problems can occur if a program is compiled to one version of the library, and then a
lower or backlevel version of the library is substituted. SOM implements a form of
version control that can detect this situation.

The following scenario illustrates how version control works with SOM:

1. A SOM library containing a new version of the Bicycle class is compiled. The
“version” of the class is major version 1, minor version 5 (or, for simplicity,
version 1.5). This version is assigned within the class definition, using the
SOMClassVersion pragma.

2. A program that uses the SOM library's definition of class Bicycle is then
compiled. The compiler determines that the version of Bicycle the program was
compiled to is version 1.5. The program runs successfully with this version of
the library.

3. A new version of the SOM library becomes available, and class Bicycle is now
at version 1.6. The program that was compiled to version 1.5 still works,
because SOM libraries are upward compatible.

4. The program that uses the Bicycle class is copied to a different system, and
class Bicycle in the SOM library on that system is at version 1.3.

5. When the program using Bicycle is loaded, the SOM runtime determines that a
backlevel version of a Bicycle is being constructed, and it issues a warning
message and ends the program. (If class version control were not used, the
results of this run of the program would be unpredictable.)

SOM verifies that the major version is the same for a client and the objects it tries to
create. When a SOM class increases its major version number, SOM assumes that an
incompatible change has occurred.

You can use version control to ensure that programs do not experience unpredictable
behavior as a result of using backlevel definitions of classes when more recent
versions of those classes were expected.

Note: Currently the SOM runtime only tests for a compatible version of a class the
first time an object of that class is instantiated. This can lead to problems in
programs consisting of multiple compilation units, in which the uses of an
object in one compilation unit expect a different version from the uses of that
object in another compilation unit.

284 VisualAge C++ Programming Guide

Upward Binary Compatibility of Libraries

The following scenario illustrates the problem:

1. A program requests an instance of a SOM class MyClass at version 1
release 3. The SOM runtime determines that the current version of
MyClass is version 1 release 4, so the object is created successfully.

2. Another compilation unit within the program requests an instance of
MyClass at version 1 release 5 (because that compilation unit was
compiled later than the first compilation unit). The SOM runtime does
not check for version compatibility, because it already did so when the
first MyClass instance was created. As a result, a program expecting at
least version 1 release 5 of a class is given an object of an earlier (and
possibly incompatible) version of that class.

If you update the version of a SOM class and recompile one of its clients, you
should recompile all the clients of its class to avoid the problem described
above.

Recompilation Requirements for SOM Programs

When you make changes to a SOM class, the type of change determines what parts of
your program and its client code require recompilation. The following tables show
the major types of changes you can make to a SOM class, and what code must be
recompiled when you make any such change.

Notes:

1. Changing the signature or name of a method, or the name of a data member, or
changing the access from private to protected/public or back, is equivalent to
deleting one method or data member and adding another.

2. These tables list the access levels in the first column and the compilation units
that need to be recompiled for adding, changing, and deleting elements in the
second, third, and fourth columns, respectively. For example, for a private
method, the entry under Adding is "Class, added method". This means that you
have to recompile the compilation unit where the class is defined and, if it is a
different compilation unit, the compilation unit where the new method is defined.

3. Classes that have all member functions declared inline are considered to be
declarations according to the rules of C++. These "declarations" can appear in
several different compilation units. If you change a member of such a class, the
"class" entry in these tables means that you must recompile the compilation unit
where the SOMBuildClass structures are created. See “The SOMDefine Pragma”
on page 322 for more details.

 Chapter 16. The IBM System Object Model 285

Interlanguage Sharing

Note: Friends are assumed to have intimate knowledge of the implementation of a
class. Because this knowledge includes knowledge of private data, friends are
assumed to be created using the same language and compiler as the classes they are
friends of, and they require recompilation whenever the class requires recompilation.

Figure 28. Recompilation Required for Method Changes

Access Adding Changing the

Implementation

Deleting

private Class, added method Class, changed method Class

protected Class, added method Class, changed method Class, friends, subclasses

public Class, added method Class, changed method Class, friends,
subclasses, all clients
that referenced method

Figure 29. Recompilation Required for Data Member Changes

Access Adding Changing the Type Deleting

private Class, methods using
new data, friends

Class, methods using
changed data, friends

Class, methods that used
data, friends

protected Class, methods using
new data, friends

Class, methods using
changed data, all
subclasses and friends

Class, methods that used
data, all subclasses and
friends

public Class, methods using
new data, friends

Class, methods using
changed data, all
subclasses and friends

Class, friends,
subclasses, all clients
that referenced the data

SOM and Interlanguage Sharing of Objects and Methods

You can share C++ classes with other programming languages either by using the
SOMAsDefault pragma for those classes, or by deriving the classes from SOMObject.
In either case, SOM restricts you from using certain C++ coding practices. These are
documented in “Differences between SOM and C++” on page 294. This section
outlines some of the issues you have to keep in mind if you want to share SOM
objects with other languages. See the SOMObjects Developer Toolkit Publications for
more details and for information on accessing SOM classes and methods from
different programming languages. For more information on the individual
SOM-related pragmas, see the descriptions in “Pragmas for Using SOM” on
page 313.

SOM Requires a Default Constructor with No Arguments

One restriction SOM imposes that primarily affects interlanguage sharing of SOM
objects, is the requirement that all classes have a default constructor that takes no
arguments. In C++ you can declare a class with no default constructor:

286 VisualAge C++ Programming Guide

Interlanguage Sharing

class X {
 public:
 int Xdata;

X(int a) {Xdata=a;};
};

When you compile a C++ client program that tries to call a nonexistent default
constructor, VisualAge C++ issues a compile-time error, even when the SOM class
the client is using was compiled separately. If you declare an X with the statement X
b;, given the above class definition (regardless of whether or not it is a SOM class),
the compiler issues an error. However, if the class is a SOM class, the compiler must
anticipate potential calls to a nonexistent default constructor by SOM clients other
than those compiled by VisualAge C++. Rather than generate an arbitrary default
constructor (one whose behavior may or may not be the desired behavior for the
class), the compiler generates one that results in a runtime error whenever it is called.
Note that this behavior makes the class unusable with DSOM, which requires a valid
default constructor.

In the following example, the defined class does not have a no-argument constructor.
However, it has a constructor that has all default arguments:

class X {
 public:
 int Xdata;

X(int a=3) {Xdata=a;};
};

VisualAge C++ generates two constructors for X if class X is a SOM class: a
constructor that takes an integer argument whose value is assigned to Xdata, and a
constructor that takes no argument and assigns the value 3 to Xdata.

Note that it is possible for client code written in another language to construct an
object of a class that does not have a default constructor, provided the client code
first calls SOMNewNoInit or SOMRenewNoInit for the object, and then invokes the
constructor.

Accessing Special Member Functions from Other Languages

In C++ you can define an operator== for a class, then use the == operator to
determine whether two objects of the class are equal. Not all languages support this
concept of operator overloading. In order for programs not written in C++ to be able
to access special member functions such as overloaded operators, you must provide
names with which these functions can be called from non-C++ programs. The
compiler uses these names to generate appropriate IDL definitions for these operators.
You can rename class operators using the SOMMethodName pragma, described on page

 Chapter 16. The IBM System Object Model 287

Interlanguage Sharing

328. The following class definition provides SOM names through which non-C++
programs can access the operators of the class:

#include <som.hh>
class Bicycle: public SOMObject {
 public:
 int model;
 Bicycle();

int operator==(Bicycle& const b) const;
int operator <(Bicycle& const b) const;
int operator >(Bicycle& const b) const;
Bicycle& operator =(Bicycle& const b);

#pragma SOMMethodName(operator==(),"BicycleEquality")
#pragma SOMMethodName(operator <(),"BicycleLessThan")
#pragma SOMMethodName(operator >(),"BicycleGreaterThan")
#pragma SOMMethodName(operator=(),"BicycleAssign")
};

Non-C++ programs can then call these special member functions by referring to their
SOM names (BicycleEquality etc.).

 Assignment Methods

The compiler provides four SOM assignment methods for a SOM class by default,
one of which is called when the compiler encounters an assignment operator. If you
define an operator= for a class, the compiler does not generate any assignment
methods, in which case calls using the SOM method names will call the appropriate
user-defined assignment operator.

The SOM assignment methods have the following SOM names and prototypes:

SOMObject *somDefaultAssign(somAssignCtrl *, SOMObject *)
SOMObject *somDefaultConstAssign(somAssignCtrl *, SOMObject *)
SOMObject *somDefaultVAssign(somAssignCtrl *, SOMObject *)
SOMObject *somDefaultConstVAssign(somAssignCtrl *, SOMObject *)

The somAssignCtrl parameter allows SOM to handle base class assignment to ensure
that each base is only assigned once when a base class appears multiple times in an
inheritance hierarchy. A user-defined operator= method does not give you this
capability. Therefore, if you code your own assignment method in a class that has
multiple parents (not including SOMObject), you should use the SOM assignment
methods rather than operator= to ensure correct results. Note that, except when an
operator= method is defined, the compiler generates SOM assignment methods for
any that are not user-defined.

You should place any user-defined assignment methods (operator=) in the release
order for the class. You do not need to put compiler-defined assignment methods

288 VisualAge C++ Programming Guide

Interlanguage Sharing

into the release order unless you want to take their address. Do not put the SOM
assignment methods in the release order, because they are introduced in SOMObject.

If you want to define a class that can be used by a client either as a C++ class or as a
SOM class using the SOM assignment methods, define both the operator= functions
and the SOM assignment methods, using conditional compilation to determine which
are included in the class definition.

All operators you provide for a class, except for the default assignment operator, must
be given SOM names using the SOMMethodName pragma, if you want them to be
easily callable from non-C++ programs. Otherwise, their names will be "mangled"
by the compiler. This includes the new and delete operators, if you define them at
the class level. You need to specify a SOM name for non-default constructors,
because they are overloaded versions of the default constructor. You do not need to
specify a SOM name for the default constructor or the destructor (the compiler
automatically gives these functions the names somDefaultInit and somDestruct).

Invoking

Constructors

from Other

Languages

Given a default constructor of the form:

ClassName();

VisualAge C++ generates a function with the following signature for use by non-C++
programs:

void somDefaultInit(this, Environment*, InitVector*);

The non-C++ program must ensure that the vector pointer and the environment
pointer are correctly set or are NULL. (You should always use a NULL value; the
compiler may use a non-NULL value in some cases, but user code that passes a
non-NULL value will behave unpredictably.) The presence or absence of the
environment pointer is dictated by the callstyle of the class. (See “IDL and OIDL
Callstyles” on page 293 for further details.) The bindings generated by the SOM
compiler normally ensure that the pointers are correctly set or are NULL.

Copy constructors have one of the following names generated for them:

 somDefaultCopyInit
 somDefaultConstCopyInit
 somDefaultVCopyInit
 somDefaultConstVCopyInit

Other nondefault constructors are given a mangled name unless you supply a SOM
name using the SOMMethodName pragma.

When invoking a nondefault constructor from outside of C++, you should first create
the object using SOMNewNoInit or SOMRenewNoInit, and then invoke the constructor.

 Chapter 16. The IBM System Object Model 289

Interlanguage Sharing

If you use SOMNew or SOMRenew and then invoke the constructor, you will end up
initializing the same object twice.

set and get Methods for Attribute Class Members

SOM supports two types of data members: attributes and instance variables.
Depending upon the pragma setting, the compiler generates default get and set
methods for these attributes if you do not supply your own. If you specify #pragma
SOMAttribute(readonly) for an attribute, no set method is generated or definable.
An attribute is a nonstatic data member for which you have specified #pragma
SOMAttribute. SOM predefines methods to set and get the value of attributes.
Attributes have the following properties:

¹ Attributes are the only way of accessing data in classes used in DSOM
applications.

If you fail to declare an attribute and attempt to directly access instance data in a
remote object, you will receive runtime error 20109 from SOM, and a message
resembling the following:

somDataResolve error: class <X_Proxy> is abstract with respect to <X>

¹ Attributes allow the class implementor to add instrumentation or other side
effects to data access by explicitly defining the _get and _set methods with the
desired function.

¹ You do not need to define methods to set or get the value of an attribute. This is
done automatically by the compiler. You can override these methods where the
automatically defined method does not provide the required functionality.

¹ The names of the set and get methods are consistent and predictable: for an
attribute j, the methods are _set_j() and _get_j(). (For C++ programs using
the attributes, you can get or set the attributes using the attribute names rather
than the get and set methods.)

¹ You can identify whether the compiler should automatically generate get or set
methods for an attribute, or whether to use a user-defined get or set method.

Get and set methods have the following signatures for scalars, arrays, and
structs/unions/classes:

290 VisualAge C++ Programming Guide

Interface Definition Language

// when 'indirect' attribute is not used with SOMAttribute pragma:
T _get_var() const volatile; // scalar var of type T - get
void _set_var(T) volatile; // scalar var of type T - set

T& _get_var() const volatile; // scalar var of type T - get, when
// SOMAttribute(...,indirect) is specified

void _set_var(const volatile T&) volatile;
// scalar var of type T - set, when
// SOMAttribute(...,indirect) is specified

T* _get_var() const volatile; // arrays of var of type T - get
void _set_var(const volatile T*) volatile;

// arrays of var of type T - set

T _get_var() const volatile; // structs/unions/classes of type T - get
void _set_var(const volatile T&) volatile;

// structs/unions/classes of type T - set

Note that pointers are used rather than references, for arrays of T. This is done
because the interface treats the type as a pointer to the first array element rather than
as a pointer to the entire array.

You do not need to declare the get and set methods for an attribute in your class
declaration, if you choose to have the compiler automatically generate them for you.
The compiler treats the get and set methods for an attribute as being declared whether
it encounters a declaration or not. The SOMAttribute pragma determines whether the
get and set methods are defined by the compiler, provided by the programmer, or, in
the case of the set method, not provided at all. If the SOMAttribute is not used,
attributes are not created.

See “The SOMAttribute Pragma” on page 315 for further information on attributes.

Interface Definition Language (IDL) Considerations

The Interface Definition Language (IDL) is a facility for defining the interface of
SOM classes. IDL provides a CORBA-compliant description of a SOM class. When
you compile a SOM-enabled C++ program with VisualAge C++, the compiler can
generate IDL definitions for SOM classes the program defines. If you are writing
code in another language and you want to create objects of those SOM classes, you
normally use an .idl file to generate a header file for your program so that the SOM
classes you use are visible to the compiler in question. The sc translator uses the
.idl file to generate the necessary bindings for the other language, and also to load
the Interface Repository (IR), which is used by DSOM.

 Chapter 16. The IBM System Object Model 291

Interface Definition Language

If you are creating SOM classes and you anticipate that all users of your classes will
be coding only in C++, you do not need to consider the impact of IDL on how you
code and on what pragmas you use. However, if there is any likelihood of non-C++
programs using your SOM classes, you need to understand the connections between
IDL and VisualAge C++.

If you are writing code to work with an existing SOM interface, you may start out
with IDL interfaces. You can use the SOM compiler from the SOMObjects
Developer Toolkit if to create a C++ .hh file from the IDL definitions.

The remainder of this section explains those connections.

Generating IDL for C++ SOM Classes

To generate IDL for a C++ SOM class, you should first ensure that the SOM class is
declared in a .hh file (as opposed to the usual .h file used for C++ class
declarations). This .hh file can be included by C++ source files that use the class,
just as .h files can. When you want to generate the IDL for a class, compile the .hh
file itself, rather than the C++ source files that include it. The compiler will produce
a .IDL file containing the class IDL definition. You do not need to specify any
SOM-related options for the IDL to be generated.

You can use #pragma SOMIDLTypes within your .hh files to group types together.
See “The SOMIDLTypes Pragma” on page 325 for further details.

IDL Types and C++ Types

IDL names for the following built-in C++ types are identical to those types' C++
names:

 ¹ short, unsigned short, long
 ¹ float, double
 ¹ char.

The following C++ types are mapped to the IDL types indicated:

¹ signed char is mapped to octet
¹ unsigned char is mapped to char
¹ int is mapped to long
¹ long double is mapped to double
¹ unsigned int is mapped to unsigned long
¹ wchar_t maps to unsigned short
¹ char* maps to string when it is a parameter, otherwise it maps to char*
¹ Enumerated types are mapped to integer constants.

292 VisualAge C++ Programming Guide

Interface Definition Language

IDL Names and C++ SOM Pragmas

If you do not use any of the SOM pragmas SOMMethodName, SOMClassName, or
SOMNoMangling, the names of SOM class methods and class templates are mangled
by VisualAge C++. These mangled names are the names that appear in the program's
.idl file, and these names are likely to be long and difficult to understand. Although
you can access SOM classes and their methods using these mangled names, this
practice is error-prone and unnecessarily complicated. You can use the above
pragmas to make the SOM names for your classes more understandable.

IDL requires that class and method names be distinct and case-insensitive.
VisualAge C++ normally ensures this by mangling class and method names.
Mangling encodes case differences, and also reflects argument types of overloaded
methods in their SOM names.

If you use the SOMClassName pragma to attach a SOM name to a class, make sure
that the name you select is unique without regard to case. If you use the
SOMNoMangling pragma for a class or a range of classes, method names in those
classes are not mangled, which creates conflicts between any names that differ only in
case, and between different overloads of functions. You can use the SOMMethodName
pragma to correct this situation, by associating SOM names with individual methods.

¹ IDL matches methods by their names only. It does not support method
overloading. This means that you must differentiate overloaded methods of a
class by using the SOMMethodName pragma on overloaded methods.

¹ IDL is case-insensitive. If you define a C++ method print to print an object,
and a C++ method of the same class called prInt to print an integer data
member of that object, their IDL names will be the same if you use the
SOMNoMangling pragma, unless you rename one of the methods using the
SOMMethodName pragma.

¹ If you use the SOMNoMangling pragma for a class or a range of classes, method
names in those classes are not mangled. This can result in multiple overloaded
functions mapping to the same name. The compiler detects such conflicts and
issues an error message. You can use SOMMethodName to resolve these conflicts.

¹ Changing the IDL name of a method can break binary compatibility because IDL
matches methods by name only.

IDL and OIDL Callstyles

The Common Object Request Broker Architecture (CORBA) defines an implied
second parameter of type Environment* for SOM methods and static member
functions. This parameter can be used to pass extra information between SOM
methods and clients, such as exception information indicating that a SOM method
could not be called. In initial releases, SOM did not support this second parameter.
This can result in compatibility problems because new code may have the extra

 Chapter 16. The IBM System Object Model 293

Differences between SOM and C++

parameter while old code, including such classes as SOMObject and SOMClass, may
not. The presence or absence of this second parameter in a class method or static
member function is referred to as the method or function's callstyle. The new
callstyle with the Environment* parameter is referred to as the IDL callstyle, while
the old callstyle without that parameter is referred to as the OIDL callstyle (for “Old
IDL”).

To preserve binary compatibility with old SOM application code, SOM now supports
both callstyles. This leads to a model where some methods in a program may expect
environment pointers, while others may not.

The callstyle is determined on a class-by-class basis. For a given class, either all
methods introduced by that class will expect an environment parameter, or none will.

Note: The callstyle of an inherited method is the callstyle of the class in which the
method is defined, not the callstyle of the inheriting class.

You can specify the callstyle for a class using the SOMCallStyle pragma. By
default, all classes will have the IDL callstyle.

Callstyles and Pointer-to-Member

You cannot assign the address of an IDL-callstyle method to a pointer to an
OIDL-callstyle method, or vice versa. Whether a pointer to member is an IDL- or
OIDL-callstyle pointer depends on the class the pointer to member is declared in. If
the declaring class uses IDL callstyle, the pointer to member can only point to
IDL-callstyle methods; otherwise it can only point to OIDL-callstyle methods. Note
that conflicts between callstyles are unlikely to occur, because IDL is the default
callstyle.

C++ Limitations to IDL

When IDL is generated for a C++ class, the bodies of inline functions are not emitted
in the IDL. As a result, if you later translate the IDL file back to a C++ header file,
inline function definitions become function declarations with no function body.

VisualAge C++ does not support inlining of C++ member functions when IDL is
generated, and all member functions of SOM classes are called out-of-line.. Because
inlining may be supported in the future, you should consider the bodies of public
inline functions to be a part of the public interface of a class if you are concerned
about upward binary compatibility of your classes.

Differences between SOM and C++

SOM imposes a slightly different view of object orientation on its classes than does
C++. This section describes differences between the object-oriented features of C++
and those supported by SOM.

294 VisualAge C++ Programming Guide

Differences between SOM and C++

Initializer Lists and Constructors

You cannot use an initializer list to initialize an object of a SOM class, because all
SOM classes have constructors, and C++ language rules do not allow classes with
constructors to be initialized in this way.

 Function Overloading

C++ lets you define multiple methods within a class that have the same name, but
different combinations of arguments. These arguments are collectively known as a
method's signature, and a class that defines multiple instances of a method with
different signatures is said to overload that method. A class can overload static
member functions as well as methods.

SOM does not support the C++ concept of function overloading, either for methods or
for static member functions. By default VisualAge C++ generates mangled names for
all overloaded functions so that different overloads can be distinguished. If both your
SOM classes and the programs that use them are coded in C++, you can easily
overload functions because the compiler uses this consistent name-mangling scheme
to resolve overloaded calls. However, if you plan to make your SOM classes
accessible to programs written in languages other than C++, you should not rely on
C++ name mangling, because the mangled names are often difficult to understand.
Instead, you should provide SOM with a function name to call for each signature of
an overloaded function. You do this using the SOMMethodName pragma. The
following example shows three declarations of method add() for a class, and three
SOMMethodName pragmas that make all three methods clearly accessible to SOM
programs written in other languages:

class Bicycle : public SOMObject {
 public:
 // ...

void add(Bicycle& const);
 void add(int);
 void add();
#pragma SOMMethodName(add(Bicycle& const),"AddBike")
#pragma SOMMethodName(add(int),"AddInt")
#pragma SOMMethodName(add(),"AddVoid")
};

 Chapter 16. The IBM System Object Model 295

Differences between SOM and C++

You could avoid the above SOMMethodName pragmas by relying on the C++ mangling
scheme, but this would make client code more difficult to write or maintain. For
example, the following function in C++:

x::operator=(const volatile x);

is mangled to the following:

dts____as__frxzvx

For classes in which the SOMNoMangling pragma is in effect, you must use the
SOMMethodName pragma for all but one of the overloaded versions of a given method
or static function. For the sake of code clarity you should use the SOMMethodName
pragma to rename all signatures of a function that is overloaded.

Calling Methods Through a NULL Pointer

Some implementations of C++ allow you to call nonvirtual functions through a NULL
pointer. You cannot do this in SOM-enabled C++ programs. If you call a nonvirtual
function through a NULL pointer in a SOM-enabled C++ program, the program may
compile successfully but it will not run correctly. For example, the call to the virtual
function vf() below causes a trap in both native C++ and SOM-enabled C++, while
the call to the nonvirtual function nvf() causes a trap only in SOM-enabled C++:

class A {
 public:
 void nvf();

virtual void vf();
} *a = NULL;

 void hoo(){
a->nvf(); // OK in C++, traps in DTS C++
a->vf(); // Traps in both because virtual.

 }

Data Member Offsets

C++ lets you determine the offset of data members into an object. An expression
such as:

int ((char*)&Instance.Member - (char*)&Instance);

can be used in C++ to determine how far into an instance Instance the member
Member is located. This syntax is also supported in SOM. However, the result of the
expression may not be identical for subclasses. Given:

class Base : public SOMObject { public: int i; } B;
class Derived : public Base { /* ... */ } D;
#define MyOffset(Obj,Member) int((char*)&Obj.Member - (char*)&Obj)

296 VisualAge C++ Programming Guide

Differences between SOM and C++

the equality MyOffset(B,i) == MyOffset(D,i) may or may not hold, depending on
how SOM determines the data reordering scheme for each class.

The offsets of data members into an object are contiguous within each
access-specifier (public, protected or private), and are assigned to each block in
the order of declaration.

Casting to Pointer-to-SOM-Object

The structure of SOM objects requires that the memory layout of the instance begin
with a pointer to an appropriate method table. This differs from normal C++ objects
in which no such pointer is allocated unless the class has virtual functions. The result
of this difference is that it is not generally possible to treat arbitrary storage as a
SOM object. In particular, casting 0 to a pointer to a SOM object is not
recommended. You can get unexpected results when a SOM pointer is cast to a
non-SOM pointer. See “Determining which new and delete Operators Are Used” on
page 306 for an example of such unexpected results.

Dereferencing a Virtual Base Pointer to a Derived Base

In native C++ a pointer to virtual base cannot be explicitly cast to a derived base.
This is allowed in SOM-enabled C++. The following example illustrates this
difference between native and SOM-enabled C++:

 #include <som.hh>

struct vbstruct : public virtual SOMObject {
 #pragma SOMDefine(*)
 };

void main() {
SOMObject *p = new vbstruct; // always legal

 vbstruct *q;
q = (vbstruct *) p; // legal for SOM, not for non-SOM
q = p; // always illegal (need a cast)

 }

 Chapter 16. The IBM System Object Model 297

Differences between SOM and C++

Multiple Inheritance of a Base Class

SOM does not implement multiple occurrences of the same nonvirtual base. For
example:

#ifdef __SOM_ENABLED__
class A : public SOMObject { /* ... */ };
#else
class A { /* ... */ };
#endif
class B : public A { /* ... */ };
class C : public A { /* ... */ };
class MyClass : public B, C { /* ... */ };

The compiler issues an error for the definition of class MyClass if class A is a SOM
class. If class A is not a SOM class, the program compiles without an error.

Note: The compiler cannot warn you about multiple inheritance errors in SOM
programs when different classes in an inheritance graph are separately
changed and recompiled. In the following example, assume that each struct is
declared in a separate file and compiled on its own:

 struct s {};
struct a:s {}; // based on s

 struct b {};
struct d:a,b {}; // based on a, b, and s

If the file containing struct b is changed to:

struct b:s {}; // based on s

and recompiled individually, the compiler will not warn you of the error, and
programs using struct d may behave unpredictably.

 Local Classes

Local, non-file-scope classes may not be SOM classes. However, a local,
non-file-scope class may have a nested class that is a SOM class. In the following
example the declaration of class CantBeFromSOM causes a compiler error because it
only has the scope of main:

class IsFromSOM: SOMObject { /* ... */ };
void main() {

class IsntFromSOM { /* ... */ };
class CantBeFromSOM: SOMObject { /* ... */ };

 }

298 VisualAge C++ Programming Guide

Differences between SOM and C++

 Abstract Classes

An abstract class is a class with one or more pure virtual functions. Abstract
C++/SOM classes are supported. If the abstract class does not define a default
constructor, VisualAge C++ prevents calls to the constructor from other C++
programs. The IDL generated by VisualAge C++ also prevents calls to a
nonexsistent abstract class constructor from programs written in other languages.

As usual with C++, you can provide your own method bodies for pure virtual member
functions. If you do this the method bodies must be provided in the same file as the
definition of the first member that is not inline, or in the same file as a SOMDefine
directive.

Classes as Objects

In native C++, a class is a syntactic entity that exists only at compile time; it has no
representation outside of the source code that defines it. A C++ class cannot be an
object, and a C++ object cannot be a class. The strict distinction between classes and
objects does not hold for SOM. A SOM class always exists at runtime, and is itself a
SOM object.

Because SOM classes are runtime objects, they can provide a number of services to
client objects. For example, a SOM class can respond to specific inquiries regarding
the interface of its instances; each SOM class includes a method named
somSupportsMethod, which when invoked with any string returns a Boolean value
indicating whether the string represents a method supported by instances of the class.
SOM class objects can also provide information to clients such as its name, the names
of its base classes, the size of its instances, the number of methods it supports, and
whether a provided SOM object is an instance of the class.

The SOMObjects Toolkit documentation describes a method for extracting the class
object of a class, where an object of that class already exists. For example, you can
call obj->somGetClass(), to extract the class object for object obj.

Where you need to name the class object but you do not have an instance of it, the
Toolkit allows you to code the class name, preceded by an underscore. For example:

 SOMObject* anotherObj;
anotherObj->somIsInstanceOf(_Foo); // toolkit syntax

This syntax is not supported with DTS classes, because it imposes on the user's
identifier space as defined by ANSI. Instead, VisualAge C++ introduces a static
member to each class it converts to a SOM class:

SOMClass * const __ClassObject

 Chapter 16. The IBM System Object Model 299

Differences between SOM and C++

This static member cannot be added to the release order for the class. You can use
the following syntax in place of the toolkit syntax shown above, for DTS classes:

 anotherObj->somIsInstanceOf(Foo::__ClassObject);

Although you can refer to this member as className::__ClassObject from within a
C++ program, it is not a “real” data member in that it does not exist in memory. The
compiler resolves references to this member to a pointer to the class object for
className.

 Metaclasses

A SOM class is also an instance of a class, because all SOM classes are objects. A
class whose instances are other classes is called a metaclass. A metaclass definition
specifies the interface of a class, just as a class definition specifies the interface of an
object. The SOM metaclass has no conceptual equivalent in C++. The SOM
metaclass exists at runtime, is capable of providing specific services to client code,
and may be used as a parent of other metaclasses. For more details on the
concept of metaclasses, see the online SOM Programming Guide.

When you create a class in SOM, the appropriate metaclass is created automatically if
you do not specify one. You can also explicitly create your own metaclasses. You
can create a metaclass by deriving from SOMClass, so that your metaclass can
perform functions such as keeping track of what SOM classes have been constructed
in a program. (A SOMClass object is constructed for every SOM class used by a
program, the first time an object of that class is constructed.) To create a metaclass,
follow these steps:

1. Derive a new class from SOMClass, which is declared in som.hh.
2. Associate this new class with the instance class via the SOMMetaClass pragma.

For example:

#include <som.hh>

class MyMeta : public SOMClass { /* ... */ };
class MyClass : public SOMObject {
 // ...
 #pragma SOMMetaClass(*,MyMeta)
};

Note: The compiler does not distinguish between metaclasses and other classes. For
SOM to function correctly, you should derive all metaclasses from SOMClass.

 offsetof macro

The offsetof macro does not work as well with SOM classes as it does with regular
C++ classes. Its value is determined at runtime, as the relative positioning of the data

300 VisualAge C++ Programming Guide

Differences between SOM and C++

“blocks” introduced by each base are not known until then. This means that
offsetof is not a reliable way to determine the position of a member within a
subclass. The value of the offsetof macro for a member of a base cannot be
assumed to be correct for subclasses of that base.

 sizeof operator

The sizeof operator works differently for SOM objects than for non-SOM objects.
The sizeof operator indicates the size in bytes of the object it is applied to. For
non-SOM objects, this size is determined at compile time, and can therefore be used
in expressions evaluated at compile time. For SOM objects, sizeof returns a value
that is determined at runtime. This means that you cannot apply the sizeof operator
to SOM objects in situations where the value must be determinable at compile time,
such as array bounds (for static initializers), case expressions, bit field lengths, and
enumerator initializers. For example, the following uses of sizeof will cause
compilation errors:

class MyClass {
 public:
 int i:sizeof(Buffer);
};
enum { E = sizeof(MyClass) } x;
try Buffer myBuffer[sizeof(Buffer)]; // Buffer is a SOM class
switch(/* ... */) {

case sizeof(Buffer): break;
}

 Instance Data

SOM supports both static data members and arrays. An array of SOM objects is
represented as a pointer to an array of SOM object instances.

 Templates

You instantiate a template class as with native C++. If you want to avoid compiler
mangling of template names, you should also supply a SOM name for any
instantiation of a template class. For example:

typedef Stack<int> IntStack;
#pragma SOMClassName(Stack<int>, "IntStack")
IntStack MyIntStack;

This declares an object MyIntStack of type Stack<int>. This could also be coded
as:

Stack<int> MyIntStack;
#pragma SOMClassName(Stack<int>, "IntStack")

You can achieve the same effect by coding:

 Chapter 16. The IBM System Object Model 301

Differences between SOM and C++

#pragma define(Stack<int>) // instantiates class Stack<int> from template
#pragma SOMClassName(Stack<int>, "IntStack")

Note that the first argument of the SOMClassName pragma (the class to be renamed)
must be the template class with its type argument, rather than the typedef.

If you plan to make a template class accessible to non-C++ programs, you must
define an implementation of the template class for each type that will be requested by
those programs. You can do this either with the SOMDefine pragma, or by
instantiating the template within the C++ program. For example:

typedef Stack<int> IntStack; // assume Stack is a SOM class
typedef Stack<double> DoubleStack; // template
typedef Stack<char> CharStack;
typedef Stack<float> FloatStack;
// ...
IntStack i; // makes IntStack available

// to non-C++ programs
#pragma SOMDefine(Stack<double>) // makes DoubleStack available
#pragma SOMDefine(CharStack) // makes CharStack available

// FloatStack is not available

You should then use the SOMClassName pragma to provide SOM names to the
template instantiations, so that the compiler does not generate mangled names for
those instantiations.

When using templates to implement SOM classes, do not include information
dependent upon the instantiation type within the class description. For example, the
following code produces a runtime error because the SOMAttribute pragma is
processed for both implementations, and each one is incorrect for the other
implementation:

#include <som.hh>

template <class T, int S = 5> // default arg value
class D : public SOMObject {
 public:
 T Velocity;
#pragma SOMAttribute(D<int>::Velocity, readonly)
#pragma SOMAttribute(D<int, 9>::Velocity, readonly)

};

#pragma define(D<int>)
#pragma define(D<int, 9>)

Instead, use a single SOMAttribute pragma for each attribute within a template class.
For the above example, the pragma would appear as:

302 VisualAge C++ Programming Guide

Differences between SOM and C++

#pragma SOMAttribute(Velocity, readonly)

In cases within the class description where a class name is expected, such as the
SOMNoMangling or SOMNoDataDirect pragmas, you should use an asterisk (*) for the
class name.

Methods of

Template

Classes

Methods of a template can be renamed using the SOMMethodName pragma. You
do not need to rename template methods, but if you plan to make your SOM classes
available to non-C++ programs, you can make the interface to your classes simpler by
renaming methods. If you do not rename template methods, the compiler mangles
their names, and the mangled names are difficult to remember and are likely to lead
to typographical errors.

You should use the SOMMethodName pragma to rename the methods of a template
class for each type you plan to instantiate the template with from a non-C++ program.
For example, if you define a template class:

template class <T> class MyTemplate {
 public:
 T dataMember;

void Push(T item);
 };

and you anticipate your template being used with types int and double, you should
add pragmas such as the following to the C++ program:

#pragma SOMMethodName(MyTemplate<int>::Push(int),"PushInt")
#pragma SOMMethodName(MyTemplate<double>::Push(double),"PushDouble")

 Memory Management

This section describes how memory is allocated to SOM objects, and tells you how to
use the new and delete operators for memory allocation.

Heap and

Stack

Memory

Allocation

C++ programs can store objects in two different areas of memory, known as the
stack and the heap. The stack and the heap are implemented by software. They are
distinguished by the fact that objects stored on the stack are automatically deleted
when the function or block within which they were created passes out of scope, while
objects stored on the heap must be explicitly deleted.

Objects allocated with the new operator are placed on the heap, including SOM
objects. Automatic objects are usually allocated in the current stack frame. SOM
objects that are declared as having automatic duration, rather than as pointers to
objects, are usually allocated on the current stack frame. As with normal C++, the
new operator is not called for automatic duration operators.

 Chapter 16. The IBM System Object Model 303

Differences between SOM and C++

Overloading

the new and

delete

Operators

You can overload the new and delete operators either on a class-specific basis
or globally. Because most programs will contain a mixture of SOM and non-SOM
objects, the compiler provides two different paths for memory allocation and
deallocation using new and delete, one for SOM objects and one for non-SOM
objects.

You can have multiple, distinguished versions of operator new within a class. The
operator delete is restricted to one version per class.

SOM accepts an additional parameter to an operator new for a SOM class, which
points to the class's class object. An operator new for a SOM class has one of the
following forms:

void *operator new (size_t InstanceSize);
void *operator new (SOMClass* ObjClass, size_t InstanceSize);

The SOM version of the global operator new has the form:

void *operator ::new (SOMClass* ObjClass, size_t InstanceSize);

You can use the SOMClass* parameter, in both class and global definitions of
operator new, to have a pointer to the object's class object passed to the operator. For
any class that is a SOM class, the compiler passes this parameter whether you specify
it in the operator's declaration or not. You do not specify this argument when
invoking new, so there is no way for a call to new to specify its own value for the
SOMClass* argument.

You cannot have both types of operator new within a class. You can have both types
of global operator new. Note that even if you use placement arguments in an operator
new, the SOMClass argument is always the first argument.

The SOMClass* argument appears first because this allows the compiler to
differentiate between a SOM operator new and a non-SOM operator new that takes a
SOMClass* as an argument. You can use the SOMClass* argument, for example, to
print the class name, by calling thisClass->somGetName() where thisClass is a
pointer to a SOM class.

The delete operator for SOM classes has the same form as for other C++ classes.
For a given class, you can have at most one of the following forms of operator
delete:

void operator delete(void*);
void operator delete(void*, size_t);
void operator delete(SOMObject*, size_t);

304 VisualAge C++ Programming Guide

Differences between SOM and C++

For the sake of easily maintained code, you should always include the size_t
argument, whether you use it or not, because it allows you to later change to an
implementation that does use the argument, without requiring client programs to be
recompiled.

The first argument is a pointer to the object instance being deleted. Because of the
way that SOM uninitializes an instance, the first word of the object still points to the
object's method table, which in turn points to the class object. This gives you access
to information about the specific class being deleted.

You can also code a SOM version of the global delete operator, of the form:

void operator ::delete(SOMObject*, size_t);

The type of the first argument is SOMObject to distinguish the function signature
from the non-SOM global delete operator. Note that the compiler recognizes such a
replacement based on the exact signature. You must include both arguments in the
declaration.

By default, this function calls SOMFree to deallocate the SOM object's storage.

The following example shows how you can define new and delete operators for a
SOM class. In the example, the new operator increments a counter each time it is
called, and then calls the global new operator to allocate storage for the object. The
delete operator decrements the same counter, and then calls the global delete
operator to deallocate the storage. The counter is a static class member that can be
accessed to determine how many objects of the class currently have storage allocated
to them by new.

 Chapter 16. The IBM System Object Model 305

Differences between SOM and C++

 #include <som.hh>
class A : public SOMObject {
public: void* operator new(SOMClass*, size_t);

 void operator delete(SOMObject*);

static int howMany; // # of dynamically alloc instances
 };

 int A::howMany;

void* A::operator new(SOMClass *cls, size_t sz)
 {
 howMany++;

return ::operator new(cls, sz);
 }

void A::operator delete(SOMObject* obj)
 {
 howMany--;
 ::operator delete(obj);
 }

Using new.h

in C++ SOM

Programs

If you normally include new.h in a program to specify that previously allocated
storage is to be used when new is invoked, you should include somnew.h instead if
the classes that make use of new are SOM classes.

Determining

which new

and delete

Operators

Are Used

If a SOM class has an operator new or an operator delete, these operators are
used for all invocations of new or delete regardless of their signatures. If a SOM
class does not have an operator new or an operator delete, the SOM version of the
global operator is used.

Warning: Memory allocated by SOMMalloc can only be freed by SOMFree, and
memory allocated by malloc can only be freed by free. If you use the SOM
function for allocating storage for an object, and the non-SOM version for
deallocating it (or vice versa), a runtime exception may occur.

For example, the following will cause a runtime exception:

class A : public SOMObject {
 public:

operator delete(void* o, size_t s) { ::delete o;)
 };

because class A's delete operator will be invoked when an object of class A is
deleted. The first parameter will point to the object to be deleted. Note that because
the first parameter is declared to be of type void*, this invocation implicitly involves
converting a SOM pointer (an A*) into a non-SOM pointer (a void*). The

306 VisualAge C++ Programming Guide

Converting C++ Programs to SOM

subsequent ::delete o therefore uses the global non-SOM delete operator, which
calls free, instead of the global SOM delete operator that calls SOMFree.

 Volatile Objects

The SOM class member functions are not defined to operate on volatile SOM objects.
If you want to use the volatile qualifier with SOM objects, you must supply
volatile versions of the SOM class member functions. In particular, you must supply
volatile versions of the four compiler-supplied operator= functions (described in
“Accessing Special Member Functions from Other Languages” on page 287). Note
that if you supply a const volatile version of a function, you should also supply a
const version of the function for the sake of runtime efficiency.

Data Members Implemented as Attributes

You cannot take the address of a data member that is implemented as an attribute.

If an attribute is made virtual by the SOMAttribute pragma, it will no longer behave
like a normal C++ data member. Because attributes are accessed using get and set
methods, making an attribute virtual in fact makes the get and set methods for the
attribute virtual, and such virtual methods can be overridden in a derived class. A
derived class that overrides these methods can therefore change the type or other
characteristics of the data. This differs from normal C++ behavior in which a derived
class cannot override definitions for data members defined in a base class.

SOM methods are all implicitly given system linkage. If the address is taken of a
static member function, the resulting pointer value will be a pointer to a function with
system linkage. The resulting pointer can only be assigned to a function pointer that
also has system linkage.

Converting C++ Programs to SOM Using SOMAsDefault

The easiest way to convert existing classes to SOM classes is to use the
SOMAsDefault pragma or the /Ga (enable implicit SOM mode) compiler option to
tell the compiler what classes to treat as SOM classes. Both the pragma and the
option include the required SOM header file som.hh, and implicitly convert all
classes to SOM classes until implicit mode is turned off by a subsequent
SOMAsDefault pragma.

When you implicitly derive classes from SOMObject, the compiler is said to have
“implicit SOM mode” turned on.

If your programs do not use any of the C++ features that are not supported by SOM
(such as multiple virtual inheritance), you should be able to compile and run them
without further change. See “Differences between SOM and C++” on page 294 for

 Chapter 16. The IBM System Object Model 307

information on C++ features that are not supported or are implemented differently for
SOM programs.

VisualAge C++ converts all structs and C++ classes to SOM classes unless the files
in which they are defined are in directories excluded from conversion to SOM by the
/Xs compiler option. Files in any directory specified by the /Xs option (as well as
certain standard directories of files to exclude) are not converted into SOM classes.
See the User's Guide for further details.

Unions cannot be SOM classes.

Non-virtual multiple inheritance is not allowed. Suppose that a class A has the class B
in at least two separate places in its class hierarchy. If class B is not a virtual base
class, class A cannot be a SOM class.

Note: Member functions of implicit SOM classes are given SYSTEM linkage. This
means that pointers that are supposed to point at static member functions of such
classes must be explicitly declared SYSTEM.

Creating SOM-Compliant Programs by Inheriting from SOMObject

To make your programs SOM-enabled using this technique, you must first include the
following header file in your program, before the first occurrence of a SOM class:

#include <som.hh>

Then, if you want to define a class that is SOM-enabled, you must inherit it from
SOMObject, or from a class that itself was inherited from SOMObject. Note that all
classes in a class hierarchy must be SOM classes, if any is a SOM class.

#include <som.hh>
class MyClass : SOMObject { /* ... */ }; // both these classes
class SubClass : MyClass { /* ... */ }; // are SOM-enabled

class EnclosingClass { SubClass a; }; // NOT SOM-enabled

Note that SOMObject has the special property of always being virtual.

Creating Shared Class Libraries with SOM

When you create a shared class library that contains SOM-enabled classes, you must
export the following three symbols for each SOM-enabled class, in order to be able to
use that class:

 ¹ SOMClassNameClassData
 ¹ SOMClassNameCClassData
 ¹ SOMClassNameNewCLass

308 VisualAge C++ Programming Guide

SOM Options

You do this by adding each name to its own line in an exports file.

DLLs that are to be dynamically loaded using methods supported by the SOM Class
Manager, such as SOMClassMgr::somFindClsInFile(), should also export an entry
point called SOMInitModule that calls the compiler-defined NewClass function for
each class defined in the DLL. For a DLL defining a single class whose SOM name
is SOMX, this entry point could be written as:

void _Export _System SOMInitModule(long, long, char*)
 {
 SOMXNewClass(SOMX_MajorVersion, SOMX_MinorVersion);
 }

 For more information about SOMInitModule, see the SOMObjects Developer

Toolkit Publications.

Using SOM Classes in DSOM Applications

Distributed SOM, or DSOM, allows remote objects to appear local to a client
program. Remote objects are implemented “under the covers” by the DSOM runtime.
Remote objects are dynamically subclassed, and must always be treated as possible
subclasses. This means that you must handle DSOM objects using pointer notation.

You cannot create or delete DSOM objects with the new and delete operators
described in this book. For methods of creating DSOM objects, see the SOMObjects

Developer Toolkit Publications.

You cannot access data directly for a DSOM object, because the object may reside on
a different system. You must use the get and set methods instead. This means you
must use the SOMAttribute pragma for all data you want to make accessible through
DSOM. For a SOM class to be usable as a DSOM class, #pragma
SOMNoDataDirect(on) must be set for the class (the /Gb compiler option sets this
pragma on at the start of the compilation unit). For further details see “The
SOMNoDataDirect Pragma” on page 331.

In DSOM, static data members are local to the current process, they are not managed
remotely. DSOM classes must also have a default constructor.

System Object Model (SOM) Options

This section describes the compiler options available for SOM support in
VisualAge C++.

SOM options that affect the same settings as SOM pragmas are effective except when
overridden by those pragmas. For example, the /Ga compiler option, which causes

 Chapter 16. The IBM System Object Model 309

SOM Options

all classes to implicitly derive from SOMObject, turns the SOMAsDefault pragma on
at the start of the translation unit. This pragma remains in effect until a #pragma
SOMAsDefault(off|pop) is encountered in the translation unit. See “Conventions
Used by the SOM Pragmas” on page 313 for more information on the relationship
between SOM pragma settings and SOM options.

In addition to the compiler options, the compiler defines a macro, __SOM_ENABLED__,
whose value corresponds to the level of SOM support provided by the compiler. If
SOM support is not provided for a particular release of the compiler,
__SOM_ENABLED__ is not predefined.

The macro's value is a positive integer constant. For the first SOM-supporting release
of VisualAge C++, the level of SOM supported is SOM 2.1, so the macro has the
value 210.

 /Ga

Syntax: Default:

/Ga[+|-] /Ga-

This option turns on implicit SOM mode, and also causes the file som.hh to be
included. It is equivalent to placing #pragma SOMAsDefault(on) at the start of the
translation unit.

All classes are implicitly derived from SOMObject until a #pragma
SOMAsDefault(off) is encountered.

For further details see “The SOMAsDefault Pragma” on page 315.

 /Gb

Syntax: Default:

/Gb[+|-] /Gb-

This option instructs the compiler to disable direct access to attributes. Instead, the
get and set methods are used. This is equivalent to specifying #pragma
SOMNoDataDirect(on) as the first line of the translation unit.

For further details see “The SOMNoDataDirect Pragma” on page 331.

310 VisualAge C++ Programming Guide

SOM Options

 /Gz

Syntax: Default:

/Gz[+|-] /Gz-

Use this option to initialize SOM classes at their point of first use during the
execution of your program.

By default, all SOM classes statically used in your program are initialized at static
initialization time. This makes your program smaller, but may result in the
initialization of classes that are not dynamically used.

With any setting of this option, any reference to a static member of a SOM class will
cause the class to be initialized.

 /Xs

Syntax: Default:

/Xs<directory|-> /Xs-

Use this option to exclude files in the specified directories when implicit SOM mode
is turned on (when classes are implicitly derived from SOM). The syntax of this
option is:

 ┌ ┐─────────────
►►──/Xs─ ───6 ┴─directory─ ──►◄

where directory is the name of the directory or directories you want to exclude.
Directory names are separated with a semicolon (;).

This option is useful for mixing implicit SOM mode with existing include files that
include declarations of classes you do not want to be implicit SOM classes.

 Chapter 16. The IBM System Object Model 311

SOM Options

 /Fr

Syntax: Default:

/Fr<classname> None

Use this option to have the compiler write the release order of the specified class to
standard output. The release order is written in the form of a SOMReleaseOrder
pragma. You can capture the output from this option when developing new SOM
classes, and include the pragma in the class definition. The syntax of the option is:

►►──/Fr──C++ClassName──►◄

For further details see “Release Order of SOM Objects” on page 281 and “The
SOMReleaseOrder Pragma” on page 333.

 /Fs

Syntax: Default:

/Fs[+|-|file| directory] /Fs-

Use this option to have the compiler generate an IDL file if a file with an .hh
extension is explicitly specified on the command line. The syntax of the option is:

►►──/Fs─ ──┬ ┬─────────── ──►◄
 ├ ┤─+─────────
 ├ ┤─-─────────
 ├ ┤─filename──
 └ ┘─directory─

where:

/Fs<+> specifies that an IDL file will be created for every .hh file that is
specified on the command line and is in the current directory. This is the default.

/Fs filename.ext is like /Fs +, but the IDL file that is created will have the
specified filename. If you do not specify an ext, the extension will be idl.

/Fs directory_name is like /Fs +, but the IDL file that is created will be put in
the directory directory_name rather than the current directory.
directory_name must end with a backslash "\".

312 VisualAge C++ Programming Guide

SOM Pragmas

/Fs- specifies that no IDL file should be created.

Macro Defined for SOM

VisualAge C++ predefines the __SOM_ENABLED__ macro with a positive integer value,
to indicate the level of SOM support provided. Currently the value for
__SOM_ENABLED__ is 210, which indicates that the level of SOM support described in
this chapter is available. If __SOM_ENABLED__ is not defined or has a zero value,
SOM is not supported by the version of the compiler on which the program is being
compiled.

Pragmas for Using SOM

This section describes the pragmas available for SOM support on VisualAge C++.
See the previous sections for background information on the reasons and uses for the
pragmas.

Note: The SOM pragmas are case-insensitive. They are shown here in a mixed-case
format to make them easier to read. You can use any combination of upper- and
lowercase letters for the pragma names and for the on, off and pop arguments.
However, you must still enter C++ tokens such as class, method, and data member
names exactly as they are declared in your program.

Conventions Used by the SOM Pragmas

Some of the SOM pragmas use certain conventions to specify the scope to which the
pragma applies. This section explains those conventions.

Pragmas

Containing

on | off | pop

SOM pragmas containing an argument of on, off, or pop implement a
stack-modelled approach to setting their option. The arguments do the following:

on Pushes the prior state (on or off) of the pragma onto the pragma's “stack,” and
turns the setting on.

off Pushes the prior state of the pragma onto the pragma's “stack,” and turns the
setting off.

pop Restores the most recently saved state from the pragma's “stack.”

The following example shows the effect of the SOMAsDefault pragma with different
settings:

 Chapter 16. The IBM System Object Model 313

SOM Pragmas

// ... SOMAsDefault is off, or ON if program compiled with /Ga

 #pragma SOMAsDefault(on)
// ... SOMAsDefault now on

 #pragma SOMAsDefault(pop)
// ... SOMAsDefault now off, or ON if program compiled with /Ga

 #pragma SOMAsDefault(off)
// ... SOMAsDefault now off

 #pragma SOMAsDefault(pop)
// ... SOMAsDefault now off, or ON if program compiled with /Ga

It is recommended that on or off be used only at the beginning of a block, and pop
only at the end of the block. This ensures that default settings are preserved around
your own settings.

If you pop a pragma more times than you push it with on or off, the results are
unpredictable.

Pragmas

Containing an

Asterisk (*)

Certain SOM pragmas accept either a C++ class name or an asterisk (*) as one of
their arguments. You can use the asterisk to indicate that the class the pragma
applies to is the class within which the pragma occurs. For example:

 #pragma SOMAsDefault(on)
class A {

 //...
 #pragma SOMClassVersion(*,3,1)

// Version number applies to class A
 }

Class B {
 // ...
 #pragma SOMClassVersion(B,3,3)

// Could have specified * instead of B
 }

 #pragma SOMClassVersion(*,2,5)
// Error - not in the scope of any class!

The SOM Pragma

This pragma causes the compiler to recognize the SOMObject class as the special
base for all SOM classes.

Note: The compiler still requires a full declaration for SOMObject. Therefore, you
must include the header file containing this declaration.

314 VisualAge C++ Programming Guide

SOM Pragmas

There should only be one occurrence of this pragma, and it should be placed in the
same header file in which SOMObject is declared.

The syntax of the pragma is:

►►──#pragma SOM──►◄

The SOMAsDefault Pragma

The setting of this pragma determines how the compiler should treat classes that are
not explicitly derived from SOMObject. When the pragma is in effect, all non-local
classes are implicitly derived from SOMObject. When the pragma is not in effect,
classes must be explicitly derived from SOMObject in order to be supported for use
by SOM programs.

The syntax of the pragma is as follows:

►►──#pragma SOMAsDefault(─ ──┬ ┬─on── ─)──────────────────────────►◄
 ├ ┤─off─
 └ ┘─pop─

The on argument saves the current setting, and turns SOMAsDefault on. The off
argument saves the current setting, and turns SOMAsDefault off. The pop setting
restores the most recently saved but still unrestored setting. See “Pragmas Containing
on | off | pop” on page 313 for more information on how to use these arguments.

When this pragma is turned on for the first time in a compilation unit, it also causes
the som.hh header file to be included if it has not already been included.

The /Ga compiler option provides the same effect as setting #pragma
SOMAsDefault(on) at the start of the translation unit.

The SOMAttribute Pragma

Use this pragma to specify that a data member is an attribute, and to communicate
IDL information regarding the implementation of attributes. For an explanation of
how attributes are used, see “set and get Methods for Attribute Class Members” on
page 290. The syntax of the pragma is:

 Chapter 16. The IBM System Object Model 315

SOM Pragmas

►►──#pragma SOMAttribute(──DataMember──,────────────────────────►

 ┌ ┐─,──────────────────
►─ ───6 ┴┬ ┬─indirect───────── ─)───────────────────────────────────►◄
 ├ ┤─nodata───────────
 ├ ┤─noget────────────
 ├ ┤─noset────────────
 ├ ┤─privatedata──────
 ├ ┤─protectedata─────
 ├ ┤─publicdata───────
 ├ ┤─readonly─────────
 └ ┘─virtualaccessors─

The pragma must appear within the class definition or declaration in which the data
member is defined. Each attribute in a class must be defined in its own pragma.
You can only make a non-static data member into an attribute. The member cannot
be a reference to an abstract class because the _get/_set functions have to operate
on values. The keywords have the following effects:

indirect The interface (prototype) for the get and set methods of this
attribute must use one level of indirection for both the argument to
be set and the return from the get. This means that if the type is
normally passed and returned by value, it will have its address
returned instead. For example, T _get_X() actually returns *T,
and _set_X(T) actually accepts *T as argument. indirect is
ignored for structs and arrays.

nodata The compiler does not allocate any instance data corresponding to
this attribute, and does not generate definitions for the get and set
methods. This means that you must define these methods yourself
and allocate any instance data these methods require. nodata
implies that there is no way for C++ code to take the address of
this variable. The compiler issues an error message when you
attempt to do this.

You must write and declare the corresponding get and set
functions, _get_variable and _set_variable, where variable
is the attribute's name.

noget The compiler does not generate a body for the attribute's get
method. You must provide a body for the get method.

noset The compiler does not generate a body for the attribute's set
method. You must provide a body for the set method. This
qualifier is ignored if the attribute is const.

316 VisualAge C++ Programming Guide

SOM Pragmas

privatedata The compiler defines instance data for the member class and gives
it private access. This is the default.

protectedata The instance data for the member class has protected access.

publicdata The instance data for the member class has public access.

readonly The attribute is not allowed to have a set method. The compiler
does not generate one. If you provide one, the compiler flags it as
an error.

virtualaccessors The _get/_set methods will be virtual functions. By default,
_get and _set are nonvirtual functions.

The access for the _get/_set methods is the same as the access for the data member.
For example, access for the _get/_set methods of a protected data member are
protected. By default, access to the data itself is private unless you specify otherwise
with one of the protecteddata or publicdata keywords. If you do not use the
SOMAttribute pragma, the data member is not an attribute. Attribute qualifiers
nodata, privatedata, protectedata, and publicdata are mutually exclusive. It is
an error for the access of an attribute's instance data to be greater than the access of
the attribute. For example, it is an error for a private attribute to have public instance
data.

If you do not use the SOMNoDataDirect pragma, access to data members uses direct
access if the user code has access to the instance data.

 When SOMNoDataDirect is used, the _get/_set methods are used. The access for
the _get/_set methods is the same as the access for the data member. For example,
access for a protected data member's _get and _set methods would be protected.

The nodata attribute modifier and the SOMNoDataDirect pragma have different
effects, although their names are similar.

Normally, the compiler creates instance data in the class to implement an attribute,
and generates definitions for get and set methods that access this “backing” data. The
access class of the methods is that of the attribute, but the backing data is private.
You can override this with the publicdata or protecteddata modifiers.

If you do not specify other modifiers or pragmas, then uses of the attribute are
compiled either into direct accesses of the backing data, or into calls to the get and
set methods. The compiler determines whether the code using the attribute can “see”
the backing data, according to the usual C++ access rules. Because members and
friend functions of a class do have access to its private data, they directly access any
backing data for attributes of that class. Methods in derived classes only have access
to public and protected members of a base class, so can only access backing data that

 Chapter 16. The IBM System Object Model 317

SOM Pragmas

is public or protected. Private backing data in a base class is not accessible, so uses
of public or protected attributes with private backing data must call _get and _set.

When you add the nodata modifier to an attribute, the compiler no longer
automatically creates backing data, and only declares the get and set methods. You
must supply definitions for them. Also, uses of the attribute will always be compiled
into get or set calls.

When you use the SOMNoDataDirect pragma on a class, it does not affect the
generation of methods or backing data, but it does affect how uses of the attribute are
compiled. SOMNoDataDirect is an indication to the compiler that instances of the
class may be proxies for remote objects built by DSOM. Because direct data access
is not possible for remote objects, the compiler must then generate _get/_set calls for
all attribute uses, unless the object is known to be local. The only object that can be
safely assumed local is the object pointed to by this, so direct data access only
happens for accesses through the this pointer. This condition is imposed in addition
to the access checks described above.

The SOMCallStyle Pragma

Use this pragma to specify the callstyle of the class within which the pragma occurs.
The syntax of this pragma is:

►►──#pragma SOMCallStyle(─ ──┬ ┬─OIDL─ ─)─────────────────────────►◄
 └ ┘─IDL──

The OIDL option indicates that the callstyle of methods introduced by the class does
not include the Environment* argument, while the IDL option indicates that the
callstyle does include the Environment* argument. The default is for IDL callstyle
to be used.

For further details see “IDL and OIDL Callstyles” on page 293.

The SOMClassInit Pragma

Use this pragma to specify a function that the SOM runtime is to invoke during
creation of the class object for the named class. The syntax of this pragma is:

►►──#pragma SOMClassInit(─ ──┬ ┬─*──────────── ─,──C++Prototype────►
 └ ┘─C++ClassName─

►──)───►◄

318 VisualAge C++ Programming Guide

SOM Pragmas

The asterisk indicates that the pragma applies to the innermost enclosing class within
which the pragma is found.

The C++Prototype is a C++ function prototype without the return type. For example,
the function double sqrt(double) would appear as sqrt(double) in this pragma.

A class object is created for a class when the first object of that class is created. The
function called after the class object is created must have the following form:

 void FunctionName(SOMClass*);

The name of the function is not significant. Once you have declared or defined this
function, you can associate it with the class constructor for a class using the pragma:

 #pragma SOMClassInit(FunctionName)

You do not need to use this pragma unless you want to define a function to be called
when the class object is created.

The SOMClassName Pragma

Use this pragma to specify SOM names for C++ classes and template classes. You
should keep in mind that naming in SOM is not case sensitive, so any names you
supply through SOMClassName should be distinguishable from other names regardless
of case. In addition, the Common Object Request Broker Architecture (CORBA)
requires that names begin with a letter of the alphabet.

If you do not use the SOMClassName pragma, and the SOMNoMangling pragma is not
in effect for the class, the compiler mangles the class name, which may make the
class difficult to use from non-C++ programs. Mangled names tend to be nonobvious,
and accessing them from SOM programs can reduce code readability and increase the
likelihood of coding errors.

The syntax of the SOMClassName pragma is:

►►──#pragma SOMClassName(─ ──┬ ┬─*──────────── ─,──"───────────────►
 └ ┘─C++ClassName─

►──NameOfSomClass──")──►◄

The asterisk indicates that the pragma applies to the innermost enclosing class within
which the pragma is found.

For example:

 Chapter 16. The IBM System Object Model 319

SOM Pragmas

 #pragma SOMAsDefault(on)
class MyCppClass { /* ... */ };
#pragma SOMClassName(MyCppClass, "MySOMClass")
class AnotherClass {

 #pragma SOMClassName(*,"AnotherSOMClass")
 //...
 };

The requirements for the SOMClassName pragma are:

¹ The class in question must already have been declared when the compiler
encounters the pragma.

¹ The class must be a SOM class.
¹ The SOM class name cannot be the same as a name associated with a different

SOM class. This means that you cannot write code such as the following:

class x : SOMObject { int a; };
class y : SOMObject { int b; };
#pragma SOMClassName(x,"y") // error - there is already a SOM Y class.

The compiler will catch this error if the two SOM classes involved are in the
same compilation unit. If they are in separate compilation units, the compiler
will not issue an error message, and the results of the program are unpredictable.

¹ The pragma must appear before the compiler needs to access the class to allocate
an instance of the class or one of its subclasses.

¹ If the asterisk (*) is used, the pragma must appear within the declaration for a
SOM class.

Multiple equivalent SOMClassName pragmas are ignored. The compiler issues an error
if it detects multiple SOMClassName pragmas for the same class that are not
equivalent.

The SOMClassVersion Pragma

SOM supports explicit version numbering for classes. The SOM runtime uses this
information to ensure that the classes of a SOM library are at least as recent as the
version of the library a client program was compiled to. When you use the
SOMClassVersion pragma, you prevent the compiler from providing version n of a
class when a client program was expecting version n+1. See “Version Control for
SOM Libraries and Programs” on page 284 for a more in-depth explanation of class
versioning. The syntax of the pragma is:

►►──#pragma SOMClassVersion(─ ──┬ ┬─C++ClassName─ ─,──Major──,─────►
 └ ┘─*────────────

►──Minor──)──►◄

320 VisualAge C++ Programming Guide

SOM Pragmas

You can use the asterisk (*) to indicate that the pragma applies to the innermost
enclosing class within which the pragma occurs. If you use the C++ClassName form
of the pragma, the class must already have been declared at the point where the
pragma is encountered.

In the following example, class Q is given a major version of 3 and a minor version
of 2:

 #pragma SOMAsDefault(on)
class Q {

 public:
 //...
 #pragma SOMClassVersion(*,3,2)
 };
 #pragma SOMAsDefault(pop)

The following considerations apply to this pragma:

¹ Both the major and minor version numbers must be provided, and both must be
positive or zero-valued integers.

¹ The compiler issues an error message if you specify multiple conflicting
SOMClassVersion pragmas for a given class.

¹ The class must already be declared at the point where the pragma is encountered.

¹ In the absence of a SOMClassVersion pragma for a class, the compiler assumes
zero for both version levels.

The SOM runtime treats a zero version value for a class as indicating that versions do
not matter, and consequently does not check for version compatibility.

The SOMDataName Pragma

Use this pragma to specify SOM names for C++ class data members. You only need
to use this pragma if you want access to the class of the applicable data member from
non-C++ programs. If you do not use this pragma or the SOMNoMangling pragma,
data member names are mangled by the compiler, and the mangled names can lead to
coding errors in the non-C++ programs that attempt to use them (because the names
are obscure and typically very long). If the member is an attribute, the member's
SOM name is used to form the get and set method names.

The syntax of the pragma is:

►►──#pragma SOMDataName(──C++DataMember──,──"SomName"──)───────►◄

 Chapter 16. The IBM System Object Model 321

SOM Pragmas

This pragma may only occur within the body of the corresponding class declaration,
and only after the corresponding data member has been declared.

The SOMDefine Pragma

Use this pragma in classes you define that have all member functions inline. The
pragma is not necessary for classes that have at least one non-inline member function.
This pragma (or the point at which the compiler encounters the definition for the first
out-of-line function declared within the class) causes the compiler to emit the
SOMBuildClass data structures, which are used by the SOM runtime. The
SOMDefine pragma for a class with all inline functions can occur in any compilation
unit, but should only appear once across all compilation units. The syntax of the
pragma is:

►►──#pragma SOMDefine(─ ──┬ ┬─*──────────── ─)────────────────────►◄
 ├ ┤─on───────────
 ├ ┤─off──────────
 ├ ┤─pop──────────
 └ ┘─C++ClassName─

You can use the asterisk (*) to indicate that the pragma applies to the innermost
enclosing class within which the pragma occurs. This version of the pragma does not
apply to nested classes of the class where the pragma occurs.

For the C++ClassName version, the name of the specified class must be visible at the
point where the pragma is encountered.

The on, off, and pop settings are independent of the asterisk setting. Use them to
control the default over specific ranges of source. (See “Pragmas Containing on | off
| pop” on page 313 for information on how to use these arguments.)

If a SOMDefine(*) pragma occurs within the body of a class, that class will be
defined (assuming it has no out-of-line functions) regardless of the current value set
by on/off/pop.

Classes that have all member functions defined inline are considered declarations by
the C++ language rules. This means that such classes can be “declared” in several
compilation units. Normally, the compiler would have to create a class structure and
its data and method tables each time it encounters such a class. When you use the
SOMDefine pragma, you allow the compiler to create only one copy of the class
structure, which can reduce your program's storage requirements and improve
performance.

This pragma is ignored if the class has any out-of-line member functions.

322 VisualAge C++ Programming Guide

SOM Pragmas

The SOMIDLDecl Pragma

Use the SOMIDLDecl pragma to override the IDL declaration that the compiler would
otherwise generate for the named type or member function to which the pragma
applies. You can use this pragma to include information related to IDL contexts and
IDL exceptions, or to fine-tune translations between char* and string types. The
syntax of the pragma is:

►►──#pragma SOMIDLDecl(─ ──┬ ┬─C++TypeName── ─"────────────────────►
 └ ┘─C++Prototype─

►──"IDLDeclaration"──)───►◄

The type or member function named must be defined before the pragma is
encountered. For type names, the sequence %N within the string is replaced by the
name of the type.

The C++Prototype is a C++ function prototype without the return type. For example,
the function double sqrt(double) would appear as sqrt(double) in this pragma.
If the prototype has a trailing const, you must include this in the prototype.

The following example shows a use of this pragma. Here the pragma redeclares one
of the char* arguments of method P as type string, while keeping the other as type
char*, and indicates that the method may raise exception exc1.

typedef int type1;
#pragma SOMIDLDecl (type1, "typedef foobar type1");

class T : public SOMObject {
 public:

void P(char*, char*);
 #pragma SOMMethodName(P,"P")

#pragma SOMIDLDecl(P, "void P(string, char*) raises(exc1)")
 // ...
 };

The SOMIDLPass Pragma

Use the SOMIDLPass pragma to emit arbitrary text to IDL. The syntax of the pragma
is:

►►──#pragma SOMIDLPass(─ ──┬ ┬─*──────────── ─"──Label──","────────►
 └ ┘─C++ClassName─

►──StringToEmit──")──►◄

 Chapter 16. The IBM System Object Model 323

SOM Pragmas

The Label field indicates where in the IDL file for a class the string is to be emitted
to. The possible labels are described below. The pragma accepts any combination of
upper- and lowercase characters for a label:

Begin Text is emitted at the start of the IDL file, just after the
controlling #ifdef and #define pair of directives.

End Text is emitted at the end of the IDL file, just before the
controlling #endif directive.

Implementation-Begin Text is emitted right after the opening brace of
implentation {.

Implementation-End Text is emitted just before the closing brace of the
implementation section.

Interface-Begin Text is emitted at the start of the interface section for the
class, right after the opening { brace.

Interface-End Text is emitted at the end of the interface section of the
class, immediately before the implementation section.

Other text The compiler ignores a SOMIDLPass pragma whose label
does not match one of the above. No warning is given.

The following class definition shows uses of the SOMIDLPass pragma:

class T : public SOMObject {
public: boolean somRespondsTo(somId);
#pragma SOMIDLTypes(*, boolean, somId)
#pragma SOMIDLPass(*,"Begin", "//Top")
#pragma SOMIDLPass(*,"End", "//End")
#pragma SOMIDLPass(*,"Interface-Begin", "//Int Begin")
#pragma SOMIDLPass(*,"Interface-End", "//Int End")
#pragma SOMIDLPass(*,"Implementation-Begin", "//Imp Begin")
#pragma SOMIDLPass(*,"Implementation-End", "//Imp End")

 };
#pragma SOMIDLPass(T,"Interface-Begin", "//Int Begin 2")
#pragma SOMIDLPass(T,"Interface-End", "//Int End 2")
#pragma SOMIDLPass(T,"Implementation-Begin", "// ** Imp Begin 2")

This example causes IDL to be emitted that looks like the following;

324 VisualAge C++ Programming Guide

SOM Pragmas

#ifndef T__IDL__
#define T__IDL__

// Top
#include <som.hh>

typedef int boolean;
typedef void* somId;

interface T : SOMObject {
// Int Begin
// Int Begin 2

 void f();
// Int End
// Int End 2

 Implementation {
// Imp Begin
// ** Imp Begin 2
somRespondsTo : override;

 // ...
// Imp End

 };
};

// End

SOMIDLPass pragmas are cumulative; each one adds to the text emitted for the class.
The relative order of the pragmas are retained.

The SOMIDLTypes Pragma

Use the SOMIDLTypes pragma to list types that you want the compiler to emit when it
generates IDL for the specified class. The syntax of the pragma is:

 ┌ ┐─,────────
►►──#pragma SOMIDLTypes(─ ──┬ ┬─*──────────── ───6 ┴─typeName─ ─)────►◄
 └ ┘─C++ClassName─

The asterisk indicates that the pragma applies to the innermost enclosing class within
which the pragma is found.

The following directive:

#pragma SOMIDLTypes(MyClass, size_t, AnotherType)

 Chapter 16. The IBM System Object Model 325

SOM Pragmas

Would ensure that size_t and AnotherType are emitted whenever IDL is emitted for
class MyClass.

Uses of this pragma for a given class are cumulative. This means that each such
pragma for a class adds the specified types to the list for the class, and the order in
which the types are emitted is the same as the order in which they are encountered.
By default (i.e., if no SOMIDLTypes pragma is specified), only the class itself is
emitted.

Note: When the compiler encounters a SOMIDLTypes pragma for a type that is
defined in a nested include file, it generates only an #include of the IDL file
corresponding to that nested include file. In other words, classes and typedefs
defined in nested include files are not generated directly in the IDL file. Note that
the IDL for the nested include file must be generated separately, because the compiler
only generates IDL for declarations in the file being compiled.

The SOMMetaClass Pragma

Use this pragma if you want to identify a particular class for SOM to use as the
metaclass of a SOM-enabled C++ class. For more information on SOM metaclasses,
see “Metaclasses” on page 300. The syntax of the pragma is:

►►──#pragma SOMMetaClass(─ ──┬ ┬─C++ClassName─ ─,──────────────────►
 └ ┘─*────────────

►─ ──┬ ┬─*──────────────── ─)─────────────────────────────────────►◄
 ├ ┤─"SOMClassName"───
 └ ┘─C++MetaClassName─

The C++ClassName indicates what class is to have the specified metaclass as its
metaclass. This form of the pragma can occur at any scope. The names of all
specified C++ classes must be visible.

An asterisk (*) in the first position indicates that the innermost enclosing class within
which the pragma occurs is the class that will have the specified metaclass. An
asterisk in the second position indicates that the innermost enclosing class within
which the pragma occurs is the class that will be the metaclass for the specified class.
You should never use the asterisk in both positions at once; this may cause the
program to enter an infinite loop when an object of the class is created. In the
following example, class Mountain is given a metaclass of Rock, and class Tree is
given a metaclass of Plant:

326 VisualAge C++ Programming Guide

SOM Pragmas

class Mountain: public SOMObject { // ...
 #pragma SOMMetaClass(*,Rock)
 }

class Plant: public SOMObject { // ...
 #pragma SOMMetaClass(Tree,*)
 }

class Loop: public SOMObject { // ...
#pragma SOMMetaClass(*,*) // Error - will loop infinitely

 }

In the version of the pragma that takes a SOM class name as the metaclass, the SOM
class name must be enclosed in double quotation marks. In the version that takes a
C++ class name as the metaclass, the metaclass must not be enclosed in double
quotation marks.

In the absence of a SOMMetaClass pragma, the compiler operates as if SOMClass was
specified as the metaclass.

The compiler issues an error message if you use multiple inequivalent SOMMetaClass
pragmas for a class.

 The SOMMethodAppend

Use the SOMMethodAppend pragma to generate the IDL “context” and “raises” strings
for methods. The syntax of the pragma is:

►►──#pragma SOMMethodAppend(────────────────────────────────────►

►──C++FunctionPrototypeLessReturn,"string"──)──────────────────►◄

The contents of the string will be collected and emitted at the end of the IDL for the
function. The “context” information will be used for CORBA contexts and
exceptions. If the pragma is used more than once for a given method, the strings will
be concatenated.

The following example illustrates how this pragma is used. Given:

class X : public SOMObject {
void MyNewMethod(int, float);

 #pragma SOMNoMangling(*)
#pragma SOMMethodAppend(MyNewMethod, "raises(\"this, that\")")
#pragma SOMMethodAppend(MyNewMethod, "context(\"something\")")

 };

the following fragment of IDL will be produced:

 Chapter 16. The IBM System Object Model 327

SOM Pragmas

void MyNewMethod(in long p__arg1, in float p__arg2)
 raises("this","that") context("something");

The SOMMethodName Pragma

Use this pragma to specify SOM names for C++ methods and operators. You only
need to use this pragma if you want access to the class of the applicable method from
non-C++ programs. If you do not use this pragma or the SOMNoMangling pragma,
method names are mangled by the compiler, and the mangled names can lead to
coding errors in the non-C++ programs that attempt to use them (because the names
are obscure and typically very long).

The syntax of the pragma is:

►►──#pragma SOMMethodName(─ ──┬ ┬─C++Prototype──── ─,──────────────►
 └ ┘─C++FunctionName─

►──"SomMethodName"──)──►◄

The C++Prototype is a C++ function prototype without the return type. For example,
the function double sqrt(double) would appear as sqrt(double) in this pragma.
If the prototype has a trailing const, you must include this in the prototype.

The C++FunctionName is an unambiguous C++ function name (one that is not
overloaded within the class). You do not include the function's signature. If you use
this version of the pragma for a function that has more than one overloaded version
in a class, the compiler issues an error message.

If you do not need to access the class from non-C++ programs, you do not need to
use either SOMMethodName or SOMNoMangling for the class.

Note: These pragmas change the SOM name of a method. As discused in “SOM
and Upward Binary Compatibility of Libraries” on page 280, renaming an item is
equivalent to removing it and adding a new item with the same characteristics. If
there is a possibility that you will access the class from non-C++ programs, use the
SOMMethodName or SOMNoMangling pragmas in your initial implementation.

You can use a combination of SOMMethodName and SOMNoMangling to give
unmangled names to methods of a class that non-C++ programs will access. The
SOMNoMangling pragma (see “The SOMNoMangling Pragma” on page 332) specifies
that the C++ name of a method becomes the SOM name of that method. As long as
the method is not an overloaded method or an operator other than the default
assignment operator, SOMNoMangling makes the method accessible to non-C++
programs by its C++ name after folding all letters to lowercase. The following

328 VisualAge C++ Programming Guide

SOM Pragmas

example shows a class declaration with a combination of SOMNoMangling and
SOMMethodName pragmas:

 #pragma SOMAsDefault(on)
class Address {

 public:
 char* Street;
 int Phone;
 #pragma SOMNoMangling(on)

int call(); // remains as call
void print(); // remains as print

 #pragma SOMNoMangling(pop)
 void update(char* street);
 #pragma SOMMethodName(update(char),"updatestreet")

// becomes updatestreet
 void update(int phone);
 #pragma SOMMethodName(update(int),"updatephone")

// becomes updatephone
 };
#pragma SOMAsDefault(pop)

The example uses SOMNoMangling to cause the C++ methods call and print to be
given SOM names identical to their C++ method names. The example then explicitly
renames the different overloads of update using SOMMethodName, so that calls to
those methods from non-C++ programs can be resolved.

You should keep in mind that naming in SOM is not case sensitive, so any names
you supply through SOMMethodName should be distinguishable from other names
regardless of case. In addition, the Common Object Request Broker Architecture
(CORBA) requires that names begin with an alphabetic character. If you use the
SOMMethodName pragma on a method, make sure the SOM name starts with an
alphabetic character.

The requirements for the SOMMethodName pragma are:

¹ The pragma must occur in the compilation unit that defines the class (the
compilation unit that contains a SOMDefine pragma or the first noninline function
for the class).

¹ The method must already have been declared at the point where the pragma is
encountered.

¹ The class must be a SOM class.

¹ You cannot rename two method signatures in a class to the same name. The
compiler issues an error if you attempt this.

 Chapter 16. The IBM System Object Model 329

SOM Pragmas

¹ The name of the member function within the SOMMethodName pragma must be
fully qualified if the pragma occurs outside of the class declaration. For
example, function clear() of class Buffer must be specified as
Buffer::clear().

¹ A method may only be renamed in conjunction with the class that introduces it.
This means that you cannot rename a function func() in subclass B of class A, if
func() was introduced by A.

¹ You cannot rename a method to _get_X() or _set_X(), where X is the name of
an attribute for that class. For example, you cannot do the following:

class MyClass : SOMObject {
 public:
 int i;
 int foo();
 #pragma SOMAttribute(i)

#pragma SOMMethodName(foo(),"_get_i") // error
 };

because the SOMAttribute pragma predefines a get and set method for i. If i
were a member of a base class of MyClass rather than of MyClass itself, the
above SOMMethodName pragma would work, but the compiler would resolve all
calls to _get_i() by calling the get method of the base class, rather than by
calling foo().

The compiler generates an error message if more than one version of an overloaded
SOM function is found and no SOMMethodName pragma has been used to rename
versions of the function. The error occurs whenever the compiler detects a version of
the function with a signature different from that of the first instantiated version. The
error refers to name clashes. You can avoid this error by using SOMMethodName
before any overload of a function other than the first is used.

Note that different instantiations of templates used as SOM classes may have different
names for a method, if SOMMethodName is used on the method for a given
instantiation of the template. For example:

template class A<T> : public SOMObject {
 public:
 Print();
 };
 #pragma SOMMethodName(A<int>::Print,"PrintInt")
 #pragma SOMMethodName(A<char*>::Print,"PrintString")

SOMMethodName and Inheritance

If you rename a method of a class using the SOMMethodName pragma, a method of a
derived class, with the same method signature, has the same SOM method name as
specified by the pragma.

330 VisualAge C++ Programming Guide

SOM Pragmas

The SOMNoDataDirect Pragma

Use this pragma to have the compiler use get/set methods for instance data access.
See “set and get Methods for Attribute Class Members” on page 290 for further
details.

The syntax of the pragma is:

►►──#pragma SOMNoDataDirect(─ ──┬ ┬─*─── ─)───────────────────────►◄
 ├ ┤─on──
 ├ ┤─off─
 └ ┘─pop─

When this pragma is in effect, all public data members can be accessed by get and set
methods only, except as specified below. When the pragma is not in effect,
nonprivate data members can be accessed directly, or by the get and set methods.
However, if a data member has #pragma SOMAttribute(nodata) set, the data
member can only be accessed by the get and set methods.

Direct access may be used by the following functions, regardless of the setting of this
pragma:

¹ Methods of the class (methods can access their own instance data directly
through the this pointer)

¹ Methods of subclasses, again through the this pointer.

Friend classes and methods may use direct access if the pragma is explicitly turned
on within the class declaration (using #pragma SOMNoDataDirect(*)). If the pragma
is turned on implicitly (using #pragma SOMNoDataDirect(on)), friend classes and
methods must use the get and set methods.

The asterisk (*) indicates that the pragma applies to the innermost enclosing class
within which the pragma occurs. The asterisk version of the pragma temporarily
overrides any setting obtained by using the on, off, or pop arguments for the pragma,
but only for the class in which it occurs. It has no effect on nested classes.

The on, off, and pop arguments are not allowed within the scope of a class. See
“Pragmas Containing on | off | pop” on page 313 for more information on how these
arguments are used.

The /Gb compiler option is equivalent to specifying #pragma SOMNoDataDirect(on)
at the beginning of the compilation unit.

 Chapter 16. The IBM System Object Model 331

SOM Pragmas

If this pragma is in effect when an instance of a SOM class is used by client code, all
SOM object data accesses via pointer or reference (other than those that use the this
pointer) are done indirectly. SOM object data member accesses done through local or
global SOM objects may be done directly.

The SOMNoMangling Pragma

Use this pragma to tell the compiler not to mangle the C++ names of methods, static
member functions, or instance data when creating SOM names or generating IDL.
The syntax of the pragma is:

►►──#pragma SOMNoMangling(─ ──┬ ┬─*─── ─)─────────────────────────►◄
 ├ ┤─on──
 ├ ┤─off─
 └ ┘─pop─

See “Conventions Used by the SOM Pragmas” on page 313 for information on how
to use the pragma's arguments. Note that, when the asterisk (*) is used in the
pragma, settings of the pragma via on, off, or pop are ignored, but only for the class
in which the pragma appears with the asterisk. This applies even if on, off, or pop
are used within the class itself. However, the asterisk version does not affect nested
classes.

When the pragma is in effect, the compiler does the following:

¹ Generates lowercase versions of declared method names, with no mangling
applied. This means that method names do not identify their arguments and
class.

¹ Detects clashes of generated names within a class. This means that two
overloaded versions of method f, for example f(int) and f(double), result in a
compiler error message. To correct such a situation, you can use the
SOMMethodName pragma on all but one of the conflicting methods.

Notes:

1. The pragma does not apply to compiler-generated functions, which continue to
use mangled names.

2. User-written member functions that begin with an underscore (except _get and
_set members) are always mangled.

3. It is an error to remap two different C++ signatures to the same SOM name.
This can happen, for example, in a class with overloaded methods where
SOMNoMangling is in effect. In such cases, you should use a SOMMethodName
pragma to rename all but one of the overloaded methods. A SOMMethodName
pragma always takes precedence over a SOMNoMangling pragma.

332 VisualAge C++ Programming Guide

SOM Pragmas

The pragma only applies to methods introduced by a class, not to inherited methods.
If SOMNoMangling is in effect when the compiler encounters a base class, the methods
of the base class will have unmangled names, as will methods with the same
signatures in any derived class, regardless of the state of SOMNoMangling in the
derived class.

In the following example, MyNewMethod receives a SOM name of mynewmethod,
rather than the mangled version VisualAge C++ would normally generate:

 #pragma SOMNoMangling(off)
 // ...

class X : public SOMObject {
#pragma SOMNoMangling(*) // overrides SOMNoMangling(off)

// for entire class
 // ...

void MyNewMethod(int, float);
 };

The SOMNonDTS Pragma

Warning:

This pragma is not intended to be used by programmers. Do not use this pragma in
your programs, or the results will be unpredictable.

This pragma is automatically inserted in generated .hh files to inform the compiler
that the class it applies to was originally a SOM class, and not a C++ class converted
to a SOM class by the VisualAge C++.

The SOMReleaseOrder Pragma

Use the SOMReleaseOrder pragma to make your SOM classes upward binary
compatible (so that client programs can use newer versions of your library without
having to recompile their source code each time you issue a new version of the
library). When you extend a class, you can only achieve binary compatibility for
users of the class if any added functions or data members are placed at the end of the
release order list specified in the pragma. See “Release Order of SOM Objects” on
page 281 if you want a better understanding of how release order is used to ensure
upward binary compatibility.

The syntax of the pragma is:

 Chapter 16. The IBM System Object Model 333

SOM Pragmas

►►──pragma SOMReleaseOrder(─────────────────────────────────────►

 ┌ ┐─,───
►─ ───6 ┴┬ ┬─*─────────────────────────────────────── ─)────────────►◄
 ├ ┤─StaticDataMember────────────────────────
 └ ┘ ──┬ ┬───── ──┬ ┬─Attribute──────────────────

└ ┘─ ! ─ ├ ┤─C++MemberFunctionPrototype─
 ├ ┤─C++UnambiguousFunctionName─
 └ ┘─"SOMMethodName"────────────

The pragma must appear within the body of the class declaration. It contains a
comma-separated list of release order elements. A release order element may be any
of the following:

¹ An asterisk (*). The asterisk reserves a slot in the release order so that you can
later add a member function or data member at that position in the list, without
requiring client programs to be recompiled. You can also reserve slots for things
like private members that you do not want to expose to client code.

¹ An attribute This uses two slots in the release order, one for the attribute's get
method, and one for its set method. Both slots are used even for const data
members, which do not have a set method, so that you can later change the
method to non-const without breaking binary compatibility. Regardless of
whether you define get and set methods or let the compiler generate them for
you, you can place either the data member name, or the get and set method
names, in the release order. (You cannot specify both the data member name and
the set and get methods.) For new classes, you should use the data member
name, for the sake of code readability and to ensure that the get and set methods
for an attribute are always consecutive in the release order. For older SOM
classes where you did not allocate consecutive slots for the get and set methods
in the class's release order, you must continue to specify each method separately
in the correct order.

¹ A static data member name. This uses one slot, for a pointer to the static data
member.

¹ A C++ member function prototype, excluding the return type. This uses one slot,
for a pointer to the function. See below for information on the use of the
exclamation point (!). Note that if the function is not overloaded within the class
you can use the unambiguous function name (see below).

¹ An unambiguous function name (one that is not overloaded by the class in
question or any of its bases).

¹ A SOM method name, enclosed in quotation marks. This is equivalent to
specifying the C++ member function name, except that you must specify the

334 VisualAge C++ Programming Guide

SOM Pragmas

simple SOM method name without specifying argument types. See below for
information on the use of the exclamation point.

Elements

Preceded by !

Release order elements preceded by an exclamation point (!) let you assert that a
member function is to have a slot reserved for it even if the member function was
inherited from a base class. The “!” helps the compiler diagnose unexpected base
class evolutions. This can occur when a base class later introduces a virtual method
whose signature matches one that is currently introduced by this class. If the method
is found in the class's release order without the “!”, the compiler issues an error
message. If you precede the method with “!”, you are asserting to the compiler that
you are aware of the method's having moved upward in the inheritance structure.
VisualAge C++ preserves binary compatibility in such situations, if you use the “!”.

The following examples show two versions of a class hierarchy. In the first version,
method aMethod() is a member of class Derived:

class Base : public SOMObject {
 };

class Derived : public Base {
 public:
 void aMethod();
 #pragma SOMReleaseOrder(aMethod())
 };

This version compiles successfully, because aMethod() is found in the release order
of the class that introduced it. Later, a version of aMethod() is added to Base:

class Base : public SOMObject {
 public:

virtual void aMethod();
 };

class Derived : public Base {
 public:
 void aMethod();
 #pragma SOMReleaseOrder(aMethod())
 };

A compilation error occurs for this version, because the release order for class
Derived contains a method that is no longer introduced by the class (it is now
introduced by Base). The compiler considers this an error because the
SOMReleaseOrder pragma does not make the inheritance of aMethod() from class
Base explicit. To solve this problem, change the release order pragma to:

 #pragma SOMReleaseOrder(!aMethod())

 Chapter 16. The IBM System Object Model 335

SOM Pragmas

This informs the compiler that the programmer coding class Derived is aware of the
addition of aMethod() to class Base. The program then compiles successfully.

 Other Requirements

This pragma may only appear within the body of the corresponding class definition.
Only one such pragma is allowed per class. If you do not provide a release order, the
compiler will assume a release order matching the order of declaration within the
class body. Although you can avoid having to specify a release order by always
placing new methods and data members below existing ones in the private and
protected/public sections of the class definition, use of the SOMReleaseOrder pragma
is strongly recommended for safety and code readability.

Items in the release order list must have been declared prior to the pragma, and must
appear only once in the list.

If a SOMReleaseOrder pragma is given for a class, it must list all the methods and
data members introduced by that class. (Compiler-generated methods, such as the
four default assignment operators that the compiler provides if you do not define any,
must also be listed, if you want to take their address.) The compiler issues a warning
message when it encounters a partial list.

You can use the /Fr option to have the compiler generate a #pragma
SOMReleaseOrder for a class. The release order includes compiler-defined methods.
By default the compiler places methods it generates at the end of the release order.
For further details see “The SOMReleaseOrder Pragma” on page 333.

Templates

and Release

Orders

Because the SOMReleaseOrder pragma must occur within the declaration for a
class, you cannot declare different release orders for different instantiations of a
template class. If you rename methods of a template instantiation using
SOMMethodName, you must still indicate the original C++ name of each method in the
release order within the template class. If you want to provide two different release
orders for different instantiations of a template, you must make one of the classes a
subclass of the template. You can then declare a different release order for that class,
using the “!” to indicate your awareness that member functions are derived from a
base class.

336 VisualAge C++ Programming Guide

Appendixes

 Part 5. Appendixes

Appendix A. ANSI Notes on Implementation-Defined Behavior 339
Implementation-Defined Behavior Common to Both C and C++ 339
C++-Specific Implementation-Defined Behavior 350
Migrating Headers from 16-bit C to 32-bit C/C++. 351
Migrating Headers from 32-bit C Set/2 V1.0 to 32-bit C++ 353
Creating New Headers to Work with Both C and C++ (32-bit) 353

Appendix B. VisualAge C++ Macros and Functions 355
Predefined Macros . 355
Intrinsic Functions . 357

Appendix C. Locale Categories . 359
LC_CTYPE Category . 359
LC_COLLATE Category . 363
LC_MONETARY Category . 372
LC_NUMERIC Category . 376
LC_TIME Category . 377
LC_MESSAGES Category . 379
LC_TOD Category . 380
LC_SYNTAX Category . 383

Appendix D. Regular Expressions . 387
Basic Matching Rules . 387
Additional Syntax Specifiers . 389
Order of precedence . 391

Appendix E. Mapping . 393
Name Mapping . 393
Demangling (Decoding) C++ Function Names 394
Data Mapping . 399

 Copyright IBM Corp. 1992, 1995 337

Appendixes

338 VisualAge C++ Programming Guide

ANSI Notes

 A ANSI Notes on Implementation-Defined Behavior

VisualAge C++ product supports the requirements of the American National Standard

for Information Systems / International Standards Organization – Programming

Language C standard, ANSI/ISO 9899-1990[1992], and the current draft of the
Working Paper for Draft Proposed American National Standard for Information

Systems - Programming Language C++ ANSI X3J16/92-0060, (September 17, 1992),
as understood and interpreted by IBM as of March 1993. It also supports the IBM
SAA C standards as documented in the Language Reference. This appendix describes
how VisualAge C++ behaves where the ANSI C Standard describes behavior as
implementation-defined. These behaviors can affect your writing of portable code.

Implementation-Defined Behavior Common to Both C and C++

The following sections describe how the VisualAge C++ product defines the behavior
classified as implementation-defined in the ANSI C Standard.

 Identifiers

¹ The number of significant characters in an identifier with no external linkage is
255.

¹ The number of significant characters in an identifier with external linkage is 255.

¹ VisualAge C++ compiler truncates all external names to 255 characters.

¹ Case sensitivity: the case of identifiers is respected unless you link using the
/IGNORECASE option of ILINK.

 Characters

¹ A character is represented by 8 bits, as defined by the CHAR_BIT macro in
<limits.h>.

¹ The same code page is used for the source and execution set. (Source characters
and strings do not need to be mapped to the execution character set.)

¹ When an integer character constant contains a character or escape sequence that
is not represented in the basic execution character set, the char is assigned the
character after the backslash, and a warning is issued. For example, '\q' is
interpreted as the character 'q'.

¹ When a wide character constant contains a character or escape sequence that is
not represented in the extended execution character set, the wchar_t is assigned
the character after the backslash, and a warning is issued.

 Copyright IBM Corp. 1992, 1995 339

ANSI Notes

¹ When an integer character constant contains more than one character, the last 4
bytes represent the character constant.

¹ When a wide character constant contains more than one multibyte character, the
last wchar_t value represents the character constant.

¹ The default behavior for char is unsigned.

¹ Any sequential spaces in your source program are interpreted as one space.

¹ All spaces are retained for the listing file.

 Strings

¹ VisualAge C++ compiler provides the following additional sequence forms for
strtod, strtol, and strtoul functions in locales other than the C locale:

inf infinity nan

All of these sequences are not case sensitive.

¹ When you use DBCS (with the /Sn compiler option), a hexadecimal character
that is a valid first byte of a double-byte character is treated as a double-byte
character inside a string. A 0 is appended to the character that ends the string.
Double-byte characters in strings must appear in pairs.

 Integers

¹ When you convert an integer to a signed char, the least-significant byte of the
integer represents the char.

¹ When you convert an integer to a short signed integer, the least-significant 2
bytes of the integer represents the short int.

¹ When you convert an unsigned integer to a signed integer of equal length, if the
value cannot be represented, the magnitude is preserved and the sign is not.

Figure 30. Integer Storage and Range

Type Amount of Storage Range (in <limits.h>)

signed short 2 bytes -32768 to 32767

unsigned short 2 bytes 0 to 65535

signed int 4 bytes -2147483648 to 2147483647

unsigned int 4 bytes 0 to 4294967295

signed long 4 bytes -2147483648 to 2147483647

unsigned long 4 bytes 0 to 4294967295

Note: Do not use the values in this table as numbers in a source program. Use the macros
defined in <limits.h> to represent these values.

340 VisualAge C++ Programming Guide

ANSI Notes

¹ When bitwise operations (OR, AND, XOR) are performed on a signed int, the
representation is treated as a bit pattern.

¹ The remainder of integer division is negative if exactly one operand is negative.

¹ When either operand of the divide operator is negative, the result is truncated to
the integer value and the sign will be negative.

¹ The result of a bitwise right shift of a negative signed integral type is sign
extended.

¹ The result of a bitwise right shift of a non-negative signed integral type or an
unsigned integral type is the same as the type of the left operand.

 Floating-Point Values

¹ When an integral number is converted to a floating-point number that cannot
exactly represent the original value, it is truncated to the nearest representable
value.

¹ When a floating-point number is converted to a narrower floating-point number,
it is rounded to the nearest representable value.

Figure 31. Floating Point

Type Amount of Storage Range of Exponents (base

10) (in <float.h>)

float (IEEE 32-bit) 4 bytes -37 to 38

double (IEEE 64-bit) 8 bytes -307 to 308

long double (IEEE 80-bit) 16 bytes -4931 to 4932

Arrays and Pointers

¹ The type of the integer required to hold the maximum size of an array (the type
of the sizeof operator, size_t) is unsigned int.

¹ The type of the integer required to hold the difference between two pointers to
elements of the same array (ptrdiff_t) is int.

¹ When you cast a pointer to an integer or an integer to a pointer, the bit patterns
are preserved.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 341

ANSI Notes

 Registers

¹ The VisualAge C++ compiler optimizes register use and does not respect the
register storage class specifier.

¹ In C programs, you cannot take the address of an object with a register storage
class. This restriction does not apply to C++ programs.

Structures, Unions, Enumerations, Bit-Fields

¹ If a member of a union object is accessed using a member of a different type, the
result is undefined.

¹ If a structure is not packed, padding is added to align the structure members on
their natural boundaries and to end the structure on its natural boundary. The
alignment of the structure or union is that of its strictest member. If the length
of the structure is greater than a doubleword, the structure is doubleword-aligned.
The alignment of the individual members is not changed. Packed structures are
not padded. See Appendix E, “Mapping” on page 393 for more information.

¹ The default type of an integer bit field is unsigned int.

¹ Bit fields are allocated from low memory to high memory, and the bytes are
reversed. For more information, see Appendix E, “Mapping” on page 393.

¹ Bit fields can cross storage unit boundaries.

¹ The maximum bit field length is 32 bits. If a series of bit fields does not add up
to the size of an int, padding may take place.

¹ A bit field cannot have type long double.

¹ The expression that defines the value of an enumeration constant cannot have
type long double.

¹ An enumeration can have the type char, short, or long and be either signed or
unsigned, depending on its smallest and largest values.

In C++, enumerations are a distinct type, and although they may be the same size
as a data type such as char, they are not considered to be of that type.

 Qualifiers

¹ All access to an object that has a type that is qualified as volatile is retained.

 Declarators

¹ There is no VisualAge C++ limit for the maximum number of declarators
(pointer, array, function) that can modify an arithmetic, structure, or union type.
The only constraint is your system resources.

342 VisualAge C++ Programming Guide

ANSI Notes

 Statements

¹ Because the case values must be integers and cannot be duplicated, the
maximum number of case values in a switch statement is 4 294 967 296.

 Preprocessor Directives

¹ The value of a single-character constant in a constant expression that controls
conditional inclusion matches the value of the character constant in the execution
character set.

¹ Such a constant can have a negative value.

¹ For the method of searching system include source files (specified within angle
brackets) see the User's Guide.

¹ User include files can be specified in double quotation marks, for example
"myheader.h". For the method of searching user include files, see the User's

Guide.

¹ For the mapping between the name specified in the include directive and the
external source file name, see the User's Guide.

¹ For the behavior of each #pragma directive, see the online or hardcopy
Language Reference.

¹ The __DATE__ and __TIME__ macros are always defined as the system date and
time.

 Library Functions

¹ In extended mode (the default) and for all C++ programs, the NULL macro is
defined to be 0. For all other language levels, NULL is defined to be: ((void
*)0).

¹ When assert is executed, if the expression is false, the diagnostic message
written by the assert macro has the format:

Assertion failed: expression, file file_name, line line_number

 Appendix A. ANSI Notes on Implementation-Defined Behavior 343

ANSI Notes

¹ To create a table of the characters set up by the CTYPE functions, use the program
in Figure 32 on page 345. The columns are organized by function as follows:

(Column 1) The hexadecimal value of the character
AN isalnum
A isalpha
C iscntrl
D isdigit
G isgraph
L islower
(Column 8) isprint
PU ispunct
S isspace
PR isprint
U isupper
X isxdigit

¹ The value returned by all math functions after a domain error (EDOM) is a NaN.

¹ The value errno is set to on underflow range errors is ERANGE.

¹ If you call the fmod function with 0 as the second argument, fmod returns 0 and
a domain error.

344 VisualAge C++ Programming Guide

ANSI Notes

#include <stdio.h>
#include <ctype.h>

int main(void)
{
 int ch;

for (ch = 0; ch <= 0xff; ch++)
 {

printf("%#04X ", ch);
printf("%3s ", isalnum(ch) ? "AN" : " ");
printf("%2s ", isalpha(ch) ? "A" : " ");
printf("%2s", iscntrl(ch) ? "C" : " ");
printf("%2s", isdigit(ch) ? "D" : " ");
printf("%2s", isgraph(ch) ? "G" : " ");
printf("%2s", islower(ch) ? "L" : " ");
printf("%c", isprint(ch) ? ch : ' ');
printf("%3s", ispunct(ch) ? "PU" : " ");
printf("%2s", isspace(ch) ? "S" : " ");
printf("%3s", isprint(ch) ? "PR" : " ");
printf("%2s", isupper(ch) ? "U" : " ");
printf("%2s", isxdigit(ch) ? "X" : " ");

 putchar('\n');
 }
 return 0;
}

Figure 32. C Program to Print out CTYPE Characters

 Appendix A. ANSI Notes on Implementation-Defined Behavior 345

ANSI Notes

 Error Handling

¹ See the online Language Reference for a list of the runtime messages generated
for perror and strerror. Note that the value of errno is not generated with
the message.

¹ See the online Language Reference for the lists of the messages provided with
VisualAge C++ compiler.

¹ Messages are classified as shown by the following table:

¹ Use the /Wn compile-time option to control the level of messages generated.
There is also a /Wgrp compiler option that provides programming-style
diagnostics to aid you in determining possible programming errors. See the
User's Guide for further information on this compiler option.

Type of Message Return Code

Information 0
Warning 0
Error 12
Severe error 16 or 20 or 99

 Signals

¹ The set of signals for the signal function and the parameters and usage of each
signal are described in Chapter 14, “Signal and OS/2 Exception Handling” on
page 217 and in the C Library Reference under signal.

¹ SIG_DFL is the default signal, and the default action taken is termination.

¹ If the equivalent of signal(sig, SIG_DFL); is not executed at the beginning of
signal handler, no signal blocking is performed.

¹ Whenever you leave a signal handler, it is reset to SIG_DFL.

346 VisualAge C++ Programming Guide

ANSI Notes

 Translation Limits

The VisualAge C++ compiler can translate and compile programs with the following
limits:

Figure 33. Translation Limits

Nesting levels of:

 ¹ Compound statements
 ¹ Iteration control
 ¹ Selection control
 ¹ Conditional inclusion
 ¹ Parenthesized declarators
 ¹ Parenthesized expression

 ¹ No limit
 ¹ No limit
 ¹ No limit
 ¹ No limit
 ¹ No limit
 ¹ No limit

Number of pointer, array and function declarators modifying an
arithmetic, a structure, a union, and incomplete type declaration

 ¹ No limit

Significant initial characters in:

 ¹ Internal identifiers
 ¹ Macro names
 ¹ External identifiers

 ¹ 255
 ¹ No limit
 ¹ 255

Number of:

¹ External identifiers in a translation unit
¹ Identifiers with block scope in one block
¹ Macro identifiers simultaneously declared in a translation unit
¹ Parameters in one function definition
¹ Arguments in a function call
¹ Parameters in a macro definition
¹ Parameters in a macro invocation
¹ Characters in a logical source line
¹ Characters in a string literal
¹ Size of an object (in bytes)
¹ Nested #include files
¹ Levels in nested structure or union
¹ Enumeration constants in an enumeration

 ¹ 1024
 ¹ No limit
 ¹ No limit
 ¹ 255
 ¹ 255
 ¹ No limit
 ¹ No limit
 ¹ No limit
 ¹ No limit
 ¹ LONG_MAX
 ¹ 127(C),255(C++)
 ¹ No limit
¹ 4 294 967 296 distinct values

 Appendix A. ANSI Notes on Implementation-Defined Behavior 347

ANSI Notes

Streams and Files

¹ The last line of a text stream does not require a terminating new-line character.

¹ Space characters that are written out to a text stream immediately before a
new-line character appear when read.

¹ If Ctrl-Z is found and all remaining source characters to end-of-file are
whitespace, Ctrl-Z is silently ignored. Subsequent Cntrl-Z's are considered to be
whitespace in this case.

If Ctrl-Z is found ina string or Lstring, it is taken to be part of the string.

Any other Ctrl-Z is an illegal charater. An error message is printed and the
character is ignored.

¹ There is no limit to the number of null characters that can be appended to the
end of a binary stream.

¹ The file position indicator of an append mode stream is positioned at the end of
the file.

¹ When a file is opened in write mode, the file is truncated. If the file does not
exist, it is created.

¹ A file of zero length does exist.

¹ For the rules for composing a valid file name, refer to the documentation for the
OS/2 operating system.

¹ For reading, the same file can be simultaneously opened multiple times; for
writing or appending, the file can be opened only once.

¹ When the remove function is used on an open file, remove fails.

¹ When you use the rename function to rename a file to a name that exists prior to
the function call, rename fails.

¹ Temporary files may not be removed if the program terminates abnormally.

¹ When the tmpnam function is called more than TMP_MAX times, tmpnam fails and
returns NULL, and sets errno to ENOGEN.

¹ The output of %p conversion in the fprintf function is equivalent to %x.

¹ The input of %p conversion in the fscanf function is the same as is expected for
%x.

¹ A '-' character that is neither the first not the last character in the fscanf scan
list (%[characters]) is considered to be part of the scan list.

348 VisualAge C++ Programming Guide

ANSI Notes

¹ The possible values of errno on failure of fgetpos are EERRSET, ENOSEEK,
and EBADPOS.

¹ The possible values of errno on failure of ftell are EERRSET, ENOSEEK,
EBADPOS, and ENULLFCB.

 Memory Management

¹ If the size requested is 0, the calloc, malloc, and realloc functions all return
a NULL pointer. In the case of realloc, the pointer passed to the function is also
freed.

 Environment

¹ You can pass arguments to main through argv, argc, and envp.

¹ If a standard stream is redirected to a file, the stream is fully buffered, with the
exception of stderr, which is line buffered. If the standard stream is attached to
a character device, it is line buffered.

¹ When the abort function is called, all open files are closed by the operating
system. The buffers are not flushed. Any memory files belonging to the process
are discarded.

¹ When the abort function is called, the return code of 3 is returned to the host
environment.

¹ When a program ends successfully and calls the exit function with the argument
0 or EXIT_SUCCESS, all buffers are flushed, all files are closed, all storage is
released, and the argument is returned.

¹ When a program ends unsuccessfully and calls the exit function with the
argument EXIT_FAILURE, all buffers are flushed, all files are closed, all storage is
released, and the argument is returned.

¹ If the argument passed to the exit function is other than 0, EXIT_FAILURE or
EXIT_SUCCESS, all buffers are flushed, all files are closed, all storage is released,
and the argument is returned.

¹ For the set of environmental names, see Chapter 1, “Setting Runtime
Environment Variables” on page 3 and the User's Guide.

¹ For the method of altering the environment list obtained by a call to the getenv
function, see the putenv function in the C Library Reference.

¹ For the format and mode of execution of a string on a call to the system
function, see the C Library Reference under system.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 349

ANSI Notes

 Localization

¹ A call to setlocale(LC_ALL, "") sets the environment to the C default locale.

 Time

¹ The local time zone and daylight saving time zone are EST and EDT. See
Chapter 1, “Setting Runtime Environment Variables” on page 3 and the tzset
function in the C Library Reference for more information on specifying the time
zone.

¹ The era for the clock function starts when the program is started by either a call
from the operating system or a call to system.

C++-Specific Implementation-Defined Behavior

The following sections describe how the VisualAge C++ product defines the behavior
classified as implementation-defined in the ANSI C++ Working Paper.

Classes, Structures, Unions, Enumerations, Bit Fields

¹ Class members are allocated in the order declared; access specifiers have no
effect on the order of allocation.

¹ Padding is added to align class members on their natural boundaries and to end
the class on its natural boundary.

¹ An int bit field behaves as an unsigned int for function overloading.

 Linkage Specifications

¹ The valid values for the string literal in a linkage specification are:

"C++" Default

"C" C language linkage

Member Access Control

¹ Class members are allocated in the order declared; access specifiers have no
effect on the order of allocation.

350 VisualAge C++ Programming Guide

ANSI Notes

Special Member Functions

¹ Temporary objects are generated under the following circumstances:

– During reference initialization
– During evaluation of expressions
– In type conversions

 – Argument passing
 – Function returns
– In throw expressions.

¹ Temporary objects exist until there is a break in the flow of control of the
program. They are destroyed on exiting the scope in which the temporary object
was created.

Migrating Headers from 16-bit C to 32-bit C/C++.

The following section describes the changes you need to make to existing 16-bit C
headers for them to work with both 32-bit C and C++ code.

 Keywords

¹ When migrating headers, rename any C++ keywords appearing in your C code.

Keywords are identifiers reserved by a programming language for special use. In
C and C++, keywords are case sensitive. That means asm may be a reserved
word but ASM need not be. In addition to language specific keywords,
VisualAge C++ also has reserved keywords.

For further information on C, C++ and VisualAge C++ keywords, see the
Language Reference.

 Structures

¹ Add #pragma pack statements around declarations of structures that will be
passed to or from 16-bit code. Do not use the _Packed keyword because it is
not supported by C++.

¹ Declare integers in the structures as short or long, not int, so that the structures
have the same size and layout in both 16-bit and 32-bit code.

¹ Create typedefs for your structures, and use #pragma seg16 on those typedefs
to specify that those structures should not cross a 64K boundary when laid out in
memory.

¹ Any structure members that are pointers must be qualified with the _Seg16 type
qualifier. For example, far * would be translated to * _Seg16. This may even
need to be done recursively if the 16-bit code will be manipulating the object
pointed at.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 351

ANSI Notes

 Function Prototypes

¹ Prototype your functions using the linkage convention keywords. Do not use
#pragma linkage because it is not supported in C++.

¹ A function pointer that is passed as an argument to a function. When you use a
function pointer as an argument to a second function, specify the linkage of the
function pointed at in the second function's prototype. This avoids errors when
the /Mp or /Ms compiler options are used to set the default linkage.

¹ If you pass a pointer to a 16-bit function as a member of an aggregate, array, or
class, you must qualify the pointer with _Seg16. The _Seg16 keyword is also
required if you use two or more levels of indirection (for example, a pointer to a
pointer). If you pass the pointer directly as a parameter, the compiler
automatically converts it to a 16-bit pointer and the _Seg16 keyword is not
required.

Required Conditional Compilation Directives

The following directives must be added to the beginning of each header file:

 #if __cplusplus
extern "C" {

 #endif

The following directives must be added to the end of each header file:

 #if __cplusplus
 }
 #endif

352 VisualAge C++ Programming Guide

ANSI Notes

Migrating Headers from 32-bit C Set/2 V1.0 to 32-bit C++

You need to make the following changes to your existing header files for them to
work with both C and C++ code:

¹ Rename any C- or C++-specific keywords. A listing of these can be found in the
Language Reference.

¹ Remove any use of the _Packed keyword and replace it with the appropriate use
of #pragma pack. C++ does not support _Packed.

¹ Remove any use of #pragma linkage and add the appropriate linkage
convention keyword must be added to the prototype. C++ does not support
#pragma linkage directives.

¹ Add to the beginning of each header file:

 #if __cplusplus
extern "C" {

 #endif

¹ Add to the end of each header file:

 #if __cplusplus
 }
 #endif

Creating New Headers to Work with Both C and C++ (32-bit)

Follow these guidelines to enable your new header files to work with both C and C++
code:

¹ Rename any C- or C++-specific keywords. A listing of these can be found in the
Language Reference.

¹ Add to the beginning of each header file:

 #if __cplusplus
extern "C" {

 #endif

¹ Add to the end of each header file:

 #if __cplusplus
 }
 #endif

¹ Do not use _Packed in your code; use #pragma pack instead.

¹ Do not use #pragma linkage in your code; use the linkage convention keywords
instead.

 Appendix A. ANSI Notes on Implementation-Defined Behavior 353

ANSI Notes

¹ Use typedefs for structures to be passed to 16-bit code and specify the typedef
in a #pragma seg16 directive.

¹ Specify the linkage on any identifiers that are pointers to functions.

¹ Use the _Seg16 type qualifier to declare external pointers that will be shared
between 32-bit and 16-bit code (and are declared in both). The _Seg16 qualifier
directs the compiler to store the pointer as a segmented pointer (with a 16-bit
selector and 16-bit offset) that can be used directly by a 16-bit application. You
can also use the pointer in a 32-bit program; VisualAge C++ compiler
automatically converts it to a flat 32-bit pointer when necessary.

354 VisualAge C++ Programming Guide

Predefined Macros

 B VisualAge C++ Macros and Functions

This appendix lists the predefined macros reserved for use by the VisualAge C++
product. It also includes a list of the intrinsic and built-in functions. For a complete
list of all functions in the VisualAge C++ runtime libraries, see the C Library

Reference.

 Predefined Macros

The macros identified in this section are provided to allow customers to write
programs that use VisualAge C++ services. Only those macros identified in this
section should be used to request or receive VisualAge C++ services.

VisualAge C++ compiler provides both the SAA predefined macros and a number of
macros specific to VisualAge C++ product.

SAA Macros

Macro Description

__LINE__ Represents the current source line number.
__FILE__ Indicates the name of the source file
__DATE__ Indicates the date when the source file was compiled.
__TIME__ Indicates the time when the source file was compiled.
__TIMESTAMP__ Indicates the date and time when the file was last modified.
__STDC__ Set to the integer 1. Indicates the compiler complies with ANSI

C standards. This macro is defined for C programs only.
__ANSI__ Indicates only language constructs that conform to ANSI C

standards are allowed. Defined using the #pragma
langlvl(ansi) directive or /Sa compiler option.

__SAA__ Indicates only language constructs that conform to the most
recent level of SAA C standards are allowed. Defined using the
#pragma langlvl(saa) directive or /S2 compiler option. This
macro is defined for C programs only.

__SAA_L2__ Indicates only language constructs that conform to SAA Level 2
C standards are allowed.. Defined using the #pragma
langlvl(saal2) directive or /S2 compiler option. This macro
is defined for C programs only.

__EXTENDED__ Indicates additional language constructs defined by the
implementation are allowed. Under the VisualAge C++
compiler, all language constructs are allowed. Defined using
the #pragma langlvl(extended) directive or /Se compiler
option.

 Copyright IBM Corp. 1992, 1995 355

Predefined Macros

VisualAge C++ Macros

Macro Description

_CHAR_UNSIGNED Indicates default character type is unsigned. Defined when the
#pragma chars(unsigned) directive is in effect, or when the
/J+ compiler option is set.

_CHAR_SIGNED Indicates default character type is signed. Defined when the
#pragma chars(signed) directive is in effect, or when the /J-
compiler option is set.

__COMPAT__ Indicates language constructs compatible with earlier versions of
the C++ language are allowed. Defined using the #pragma
langlvl(compat) directive or /Sc compiler option. This
macro is defined for C++ programs only.

__cplusplus Set to the integer 1. Indicates the product is a C++ compiler.
This macro is defined for C++ programs only.

__DBCS__ Indicates DBCS support is enabled. Defined using the /Sn
compiler option.

__DDNAMES__ Indicates ddnames are supported. Defined using the /Sh
compiler option.

__DEBUG_ALLOC__ Maps memory management functions to their debug versions.
Defined using the /Tm compiler option.

__DLL__ Indicates code for a DLL is being compiled. Defined using the
/Ge- compiler option.

_FP_INLINE_ Inlines the trigonometric functions (cos, sin, and so on).
__FUNCTION__ Indicates the name of the function currently being compiled.

For C++ programs, expands to the actual function prototype.
__HHW_INTEL__ Indicates that the host hardware is an Intel** processor.
__HOS_OS2__ Indicates that the host operating system is OS/2.
__IBMC__ Indicates the version number of the VisualAge C compiler.
__IBMCPP__ Indicates the version number of the VisualAge C++ compiler.
__IMPORTLIB__ Indicates that dynamic linking is used. Defined using the /Gd

option.
_M_I386 Indicates code is being compiled for a 386 chip or higher.
__MULTI__ Indicates multithread code is being generated. Defined using

the /Gm compiler option.
__NO_DEFAULT_LIBS__ Indicates that information about default libraries will not be

included in object files. Defined using the /Gd option.
__OS2__ Set to the integer 1. Indicates the product is an OS/2 compiler.
__SOM_ENABLED__ Indicates that native SOM is supported.
__SPC__ Indicates the subsystem libraries are being used. Defined using

the /Rn compiler option.
__TEMPINC__ Indicates the template-implementation file method of resolving

template functions is being used. Defined using the /Ft
compiler option.

356 VisualAge C++ Programming Guide

Intrinsic Functions

__THW_INTEL__ Indicates that the target hardware is an Intel processor.
__TOS_OS2__ Indicates that the target operating system is OS/2.
__TILED__ Indicates tiled memory is being used. Defined using the /Gt

compiler option.
__32BIT__ Set to the integer 1. Indicates the product is a 32-bit compiler.

The value of the __IBMC__ and __IBMCPP__ macros is 300. One of these two
macros is always defined: when you compile C++ code, __IBMCPP__ is defined; when
you compile C code, __IBMC__ is defined. The macros __OS2__, _M_I386, and
__32BIT__ are always defined also. The remaining macros, with the exception of
__FUNCTION__, are defined when the corresponding #pragma directive or compiler
option is used.

 Intrinsic Functions

The VisualAge C++ compiler inlines some functions instead of generating a function
call for them. Some of these functions are always inlined; others are inlined only
when you compile with the optimization option (/O or /Oc) on.

Functions that Are Inlined when Optimization Is On

When optimization is on (/O+), VisualAge C++ compiler by default inlines (generates
code instead of a function call) the following C library functions:

The compiler inlines these functions when you include the appropriate header file that
contains the function prototype and the #define and #pragma statements for the
function.

You can override the inlining either by undefining the macro or by placing the name
of the function in parentheses, thus disabling the processor substitution. The function
then remains a function call, and is not replaced by the code. The size of your object
module is reduced, but your application program runs more slowly.

Note: The optimize-for-size compiler option (/Oc) also disables the inlining of
intrinsic functions.

abs
_clear87
_control87
fabs

labs
memchr
memcmp
memcpy

memmove
memset
_status87
strcat

strchr
strcmp
strcpy
strlen

strncat
strncmp
strncpy
strrchr

 Appendix B. VisualAge C++ Macros and Functions 357

Intrinsic Functions

Functions that Are Always Inlined

The following functions are built-in functions, meaning they do not have any backing
library functions, and are always inlined:

Do not parenthesize the names of these functions.

The built-in functions are all defined in <builtin.h>, in addition to the standard
header definitions.

_alloca
_crotl
_crotr
__cxchg
_disable
_enable
_facos

_fasin
_fcos
_fcossin
_fpatan
_fptan
_fsin
_fsincos

_fsqrt
_fyl2x
_fyl2xp1
_f2xm1
_getTIBvalue
_inp
_inpd

_inpw
_interrupt
_lrotl
_lrotr
__lxchg
_outp
_outpd

_outpw
__parmdwords
_rotl
_rotr
_srotl
_srotr
__sxchg

358 VisualAge C++ Programming Guide

Locale Categories

 C Locale Categories

This appendix provides a listing of the categories which define a locale, the keywords
used in each category, and the values which are valid for each keyword.

 The following locate categories are described:

 ¹ LC_CTYPE Category
 ¹ LC_COLLATE Category
 ¹ LC_MONETARY Category
 ¹ LC_NUMERIC Category
 ¹ LC_TIME Category
 ¹ LC_MESSAGES Category
 ¹ LC_TOD Category
 ¹ LC_SYNTAX Category

 LC_CTYPE Category

This category defines character classification, case conversion, and other character
attributes. In this category, you can represent a series of characters by using three
adjacent periods as an ellipsis symbol (...). An ellipsis is interpreted as including all
characters with an encoded value higher than the encoded value of the character
preceding the ellipsis and lower than the encoded value following the ellipsis.

An ellipsis is valid within a single encoded character set.

For example, \x30;...;\x39; includes in the character class all characters with
encoded values from \x30 to \x39.

The keywords recognized in the LC_CTYPE category are listed below. In the
descriptions, the term "automatically included" means that it is not an error either to
include or omit any of the referenced characters; they are assumed by default even if
the entire keyword is missing and accepted if present.

When a character is automatically included, it has an encoded value dependent on the
charmap file in effect. If no charmap file is specified, the encoding of the encoded
character set IBM-850 is assumed.

copy Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keywords
are present in this category. If the locale is not found, an error is reported

 Copyright IBM Corp. 1992, 1995 359

Locale Categories

and no locale output is created. The copy keyword cannot specify a locale
that also specifies the copy keyword for the same category.

upper Defines characters to be classified as uppercase letters. No character
defined for the keywords cntrl, digit, punct, or space can be specified.
The uppercase letters A through Z are automatically included in this class.

The isupper and iswupper functions test for any character and wide
character, respectively, included in this class.

lower Defines characters to be classified as lowercase letters. No character
defined for the keywords cntrl, digit, punct, or space can be specified.
The lowercase letters a through z are automatically included in this class.

The islower and iswlower functions test for any character and wide
character, respectively, included in this class.

alpha Defines characters to be classified as letters. No character defined for the
keywords cntrl, digit, punct, or space can be specified. Characters
classified as either upper or lower are automatically included in this class.

The isalpha and iswalpha functions test for any character or wide
character, respectively, included in this class.

digit Defines characters to be classified as numeric digits. Only the digits 0, 1,
2, 3, 4, 5, 6, 7, 8, 9. can be specified. If they are, they must be in
contiguous ascending sequence by numerical value. The digits 0 through 9
are automatically included in this class.

The isdigit and iswdigit functions test for any character or wide
character, respectively, included in this class.

space Defines characters to be classified as whitespace characters. No character
defined for the keywords upper, lower, alpha, digit, or xdigit can be
specified for space. The characters <space>, <form-feed>, <newline>,
<carriage-return>, <horizontal-tab>, and <vertical-tab>, and any
characters defined in the class blank are automatically included in this
class.

The functions isspace and iswspace test for any character or wide
character, respectively, included in this class.

cntrl Defines characters to be classified as control characters. No character
defined for the keywords upper, lower, alpha, digit, punct, graph,
print, or xdigit can be specified for cntrl.

The functions iscntrl and iswcntrl test for any character or wide
character, respectively, included in this class.

360 VisualAge C++ Programming Guide

Locale Categories

punct Defines characters to be classified as punctuation characters. No character
defined for the keywords upper, lower, alpha, digit, cntrl, or xdigit,
or as the <space> character, can be specified.

The functions ispunct and iswpunct test for any character or wide
character, respectively, included in this class.

graph Defines characters to be classified as printing characters, not including the
<space> character. Characters specified for the keywords upper, lower,
alpha, digit, xdigit, and punct are automatically included. No character
specified in the keyword cntrl can be specified for graph.

The functions isgraph and iswgraph test for any character or wide
character, respectively, included in this class.

print Defines characters to be classified as printing characters, including the
<space> character. Characters specified for the keywords upper, lower,
alpha, digit, xdigit, punct, and the <space> character are automatically
included. No character specified in the keyword cntrl can be specified for
print.

The functions isprint and iswprint test for any character or wide
character, respectively, included in this class.

xdigit Defines characters to be classified as hexadecimal digits. Only the
characters defined for the class digit can be specified, in contiguous
ascending sequence by numerical value, followed by one or more sets of six
characters representing the hexadecimal digits 10 through 15, with each set
in ascending order (for example, A, B, C, D, E, F, a, b, c, d, e, f).
The digits 0 through 9, the uppercase letters A through F, and the lowercase
letters a through f are automatically included in this class.

The functions isxdigit and iswxdigit test for any character or wide
character, respectively, included in this class.

blank Defines characters to be classified as blank characters. The characters
<space> and <tab> are automatically included in this class.

The functions isblank and iswblank test for any character or wide
character, respectively, included in this class.

toupper Defines the mapping of lowercase letters to uppercase letters. The operand
consists of character pairs, separated by semicolons. The characters in each
character pair are separated by a comma; the pair is enclosed in parentheses.
The first character in each pair is the lowercase letter, and the second is the
corresponding uppercase letter. Only characters specified for the keywords
lower and upper can be specified for toupper. The lowercase letters a
through z, their corresponding uppercase letters A through Z, are

 Appendix C. Locale Categories 361

Locale Categories

automatically in this mapping, but only when the toupper keyword is
omitted from the locale definition.

It affects the behavior of the toupper and towupper functions for mapping
characters and wide characters, respectively.

tolower Defines the mapping of uppercase letters to lowercase letters. The operand
consists of character pairs, separated by semicolons. The characters in each
character pair are separated by a comma; the pair is enclosed by
parentheses. The first character in each pair is the uppercase letter, and the
second is its corresponding lowercase letter. Only characters specified for
the keywords lower and upper can be specified. If the tolower keyword
is omitted from the locale definition, the mapping is the reverse mapping of
the one specified for the toupper.

The tolower keyword affects the behavior of the tolower and towlower
functions for mapping characters and wide characters, respectively.

You may define additional character classes using your own keywords. A maximum
of 32 classes are supported in total: the 12 standard classes, and up to 20 user-defined
classes. The 12 standard classes being composed of the 11 standard classes listed
above plus the ALNUM class which contains the total characters in the ALPHA and
DIGIT classes.

The defined classes affect the behavior of wctype and iswctype functions.

Here is an example of the definition of the LC_CTYPE category:

362 VisualAge C++ Programming Guide

Locale Categories

 #############
 LC_CTYPE
 #############

upper letters are A-Z by default plus the three defined below
 upper <A-acute>;<A-grave>;<C-acute>

lower case leters are a-z by default plus the three defined below
 lower <a-acute>;<a_grave><c-acute>

space characters are default 6 characters plus the one defined below
 space <hyphen-minus>

 cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\
 <form-feed>;<carriage-return>;<NUL>;\
 <SO>;<SI>

default graph, print,punct, digit, xdigit, blank classes

toupper mapping defined only for the following three pairs
 toupper (<a-acute),<A-acute>);\
 (<a-grave),<A-grave>);\
 (<c-acute),<C-acute>);

default upper to lower case mapping

user defined class
 myclass <e-ogonek>;<E-ogonek>

 END LC_CTYPE

 LC_COLLATE Category

A collation sequence definition defines the relative order between collating elements
(characters and multicharacter collating elements) in the locale. This order is
expressed in terms of collation values. It assigns each element one or more collation
values (also known as collation weights). The collation sequence definition is used
by regular expressions, pattern matching, and sorting and collating functions. The
following capabilities are provided:

1. Multicharacter collating elements. Specification of multicharacter collating
elements (sequences of two or more characters to be collated as an entity).

2. User-defined ordering of collating elements. Each collating element is
assigned a collation value defining its order in the character (or basic) collation
sequence. This ordering is used by regular expressions and pattern matching, and

 Appendix C. Locale Categories 363

Locale Categories

unless collation weights are explicitly specified, also as the collation weight to be
used in sorting.

3. Multiple weights and equivalence classes. Collating elements can be assigned
1 to 6 collating weights for use in sorting. The first weight is referred to as the
primary weight.

4. One-to-many mapping. A single character is mapped into a string of collating
elements.

5. Many-to-Many substitution. A string of one or more characters are mapped to
another string (or an empty string). The character or characters are ignored for
collation purposes.

6. Equivalence class definition. Two or more collating elements have the same
collation value (primary weight).

7. Ordering by weights. When two strings are compared to determine their
relative order, the two strings are first broken up into a series of collating
elements. Each successive pair of elements is compared according to the relative
primary weights for the elements. If they are equal, and more than one weight is
assigned, then the pairs of collating elements are compared again according to the
relative subsequent weights, until either two collating elements are not equal or
the weights are exhausted.

 Collating Rules

Collation rules consist of an ordered list of collating order statements, ordered from
lowest to highest. The <NULL> character is considered lower than any other character.
The ellipsis symbol ("...") is a special collation order statement. It specifies that a
sequence of characters collate according to their encoded character values. It causes
all characters with values higher than the value of the <collating identifier> in
the preceding line, and lower than the value for the <collating identifier> on the
following line, to be placed in the character collation order between the previous and
the following collation order statements in ascending order according to their encoded
character values.

The use of the ellipsis symbol ties the definition to a specific coded character set and
may preclude the definition from being portable among implementations.

The ellipsis symbol must be on a line by itself, not the first or last line, and the
preceding and succeeding lines must not specify a weight.

A collating order statement describes how a collating identifier is weighted.

Each <collating-identifier> consists of a character, <collating-element>,
<collating-symbol>, or the special symbol UNDEFINED. The order in which

364 VisualAge C++ Programming Guide

Locale Categories

collating elements are specified determines the character order sequence, such that
each collating element is considered lower than the elements following it. The
<NULL> character is considered lower than any other character. Weights are expressed
as characters, <collating-symbol>s, <collating-element>s, or the special symbol
IGNORE. A single character, a <collating-symbol>, or a <collating-element>
represents the relative position in the character collating sequence of the character or
symbol, rather than the character or characters themselves. Thus rather than assigning
absolute values to weights, a particular weight is expressed using the relative "order
value" assigned to a collating element based on its order in the character collation
sequence.

A <collating-element> specifies multicharacter collating elements, and indicates
that the character sequence specified by the <collating-element> is to be collated
as a unit and in the relative order specified by its place.

A <collating-symbol> can define a position in the relative order for use in weights.
Do not use a <collating-symbol> to specify a weight.

The <collating-symbol> UNDEFINED is interpreted as including all characters not
specified explicitly. Such characters are inserted in the character collation order at
the point indicated by the symbol, and in ascending order according to their encoded
character values. If no UNDEFINED symbol is specified, and the current coded
character set contains characters not specified in this clause, the LOCALDEF utility
issues a warning and places such characters at the end of the character collation order.

The syntax for a collation order statement is:

<collating-identifier> <weight1>;<weight2>;...;<weightn>

Collation of two collating identifiers is done by comparing their relative primary
weights. This process is repeated for successive weight levels until the two identifiers
are different, or the weight levels are exhausted. The operands for each collating
identifier define the primary, secondary, and subsequent relative weights for the
collating identifier. Two or more collating elements can be assigned the same weight.
If two collating identifiers have the same primary weight, they belong to the same
equivalence class.

The special symbol IGNORE as a weight indicates that when strings are compared
using the weights at the level where IGNORE is specified, the collating element should
be ignored, as if the string did not contain the collating element. In regular
expressions and pattern matching, all characters that are IGNOREd in their primary
weight form an equivalence class.

All characters specified by an ellipsis are assigned unique weights, equal to the
relative order of the characters. Characters specified by an explicit or implicit

 Appendix C. Locale Categories 365

Locale Categories

UNDEFINED special symbol are assigned the same primary weight (they belong to the
same equivalence class).

One-to-many mapping is indicated by specifying two or more concatenated characters
or symbolic names. For example, if the character "<ezset>" is given the string
"<s><s>" as a weight, comparisons are performed as if all occurrences of the
character <ezset> are replaced by <s><s> (assuming <s> has the collating weight
<s>). If it is desirable to define <ezset> and <s><s> as an equivalence class, then a
collating element must be defined for the string "ss".

If no weight is specified, the collating identifier is interpreted as itself.

For example, the order statement

<a> <a>

is equivalent to

<a>

 Collating Keywords

The following keywords are recognized in a collation sequence definition.

copy
Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword shall
be present in this category. If the locale is not found, an error is reported and no
locale output is created. The copy keyword cannot specify a locale that also
specifies the copy keyword for the same category.

collating-element
Defines a collating-element symbol representing a multicharacter collating
element. This keyword is optional.

In addition to the collating elements in the character set, the collating-element
keyword can be used to define multicharacter collating elements. The syntax is:

"collating-element %s from %s\n", <collating-element>, <string>

The <collating-element> should be a symbolic name enclosed between angle
brackets (< and >), and should not duplicate any symbolic name in the current
charmap file (if any), or any other symbolic name defined in this collation
definition. The string operand is a string of two or more characters that collate
as an entity. A <collating-element> defined with this keyword is only
recognized within the LC_COLLATE category.

For example:

366 VisualAge C++ Programming Guide

Locale Categories

collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <ll> from "ll"

collating-symbol
Defines a collating symbol for use in collation order statements.

The collating-symbol keyword defines a symbolic name that can be associated
with a relative position in the character order sequence. While such a symbolic
name does not represent any collating element, it can be used as a weight. This
keyword is optional.

This construct can define symbols for use in collation sequence statements,
between the order_start and order_end keywords.

The syntax is:

"collating-symbol %s\n", <collating-symbol>

The <collating-symbol> must be a symbolic name, enclosed between angle
brackets (< and >), and should not duplicate any symbolic name in the current
charmap file (if any), or any other symbolic name defined in this collation
definition. A <collating-symbol> defined with this keyword is only
recognized within the LC_COLLATE category.

For example:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

substitute
The substitute keyword defines a substring substitution in a string to be
collated. This keyword is optional. The following operands are supported with
the substitute keyword:

"substitute %s with %s\n", <regular-expr>, <replacement>

The first operand is treated as a basic regular expression. The replacement
operand consists of zero or more characters and regular expression
back-references (for example, \1 through \9). The back-references consist of the
backslash followed by a digit from 1 to 9. If the backslash is followed by two
or three digits, it is interpreted as an octal constant.

When strings are collated according to a collation definition containing substitute
statements, the collation behaves as if occurrences of substrings matching the
basic regular expression are replaced by the replacement string, before the strings
are compared based on the specified collation sequence. Ranges in the regular
expression are interpreted according to the current character collation sequence
and character classes according to the character classification specified by the
LC_CTYPE environment variable at collation time. If more than one substitute
statement is present in the collation definition, the collation process behaves as if

 Appendix C. Locale Categories 367

Locale Categories

the substitute statements are applied to the strings in the order they occur in the
source definition. The substitution for the substitute statements are processed
before any substitutions for one-to-many mappings. The support of the
"substitute" keyword is an IBM VisualAge C++ extension to the POSIX
standard.

order_start
Define collating rules. This statement is followed by one or more collation order
statements, assigning character collation values and collation weights to collating
elements.

The order_start keyword must precede collation order entries. It defines the
number of weights for this collation sequence definition and other collation rules.

The syntax of the order_start keyword is:

order_start <sort-rule1>;<sort-rule1>;...;<sort-rulen>

The operands of the order_start keyword are optional. If present, the
operands define rules to be applied when strings are compared. The number of
operands define how many weights each element is assigned; if no operands are
present, one forward operand is assumed. If any is present, the first operand
defines rules to be applied when comparing strings using the first (primary)
weight; the second when comparing strings using the second weight, and so on.
Operands are separated by semicolons (;). Each operand consists of one or
more collation directives separated by commas (,). If the number of operands
exceeds the limit of 6, the LOCALDEF utility issues a warning message.

The following directives are supported:

forward
specifies that comparison operations for the weight level proceed from the
start of the string towards its end.

backward
specifies that comparison operations for the weight level proceed from the
end of the string toward its beginning.

no-substitute
no substitution is performed, such that the comparison is based on collation
values for collating elements before any substitution operations are
performed.

Notes:

1. This is an IBM VisualAge C++ extension to the POSIX standard.

2. When the no-substitute keyword is specified, one-to-many mappings
are ignored.

368 VisualAge C++ Programming Guide

Locale Categories

position
specifies that comparison operations for the weight level must consider the
relative position of non-IGNOREd elements in the strings. The string
containing a non-IGNOREd element after the fewest IGNOREd collating
elements from the start of the comparison collates first. If both strings
contain a non-IGNOREd character in the same relative position, the collating
values assigned to the elements determine the order. If the strings are
equal, subsequent non-IGNOREd characters are considered in the same
manner.

order_end
The collating order entries are terminated with an order_end keyword.

Here is an example of an LC_COLLATE category:

 LC_COLLATE
ARTIFICIAL COLLATE CATEGORY

collating elements
 ▌1▐ collating-element <ch> from "<c><h>"
 collating-element <Ch> from "<C><h>"

collating-element <eszet> from "<s><z>"

%collating symbols for relative order definition

 collating-symbol <LOW>
 ▌2▐ collating-symbol <UPPER-CASE>
 collating-symbol <LOWER-CASE>
 collating-symbol <NONE>

 ▌3▐ order_start forward;backward;forward
 <NONE>
 ▌4▐ <LOW>
 <UPPER-CASE>
 <LOWER-CASE>

 ▌5▐ UNDEFINED IGNORE;IGNORE;IGNORE

 <space>
 ▌6▐ ...
 <quotation-mark>
 ▌7▐ <a> <a>;<NONE>;<LOWER-CASE>
▌10▐ <a-acute> <a>;<a-acute>;<LOWER-CASE>
▌11▐ <a-grave> <a>;<a-grave>;<LOWER-CASE>
 ▌8▐ <A> <a>;<NONE>;<UPPER-CASE>
▌11▐ <A-acute> <a>;<a-acute>;<UPPER-CASE>

 Appendix C. Locale Categories 369

Locale Categories

▌11▐ <A-grave> <a>;<a-grave>;<UPPER-CASE>
▌11▐ <ch> <ch>;<NONE>;<LOWER-CASE>
▌11▐ <Ch> <ch>;<NONE>;<UPPER-CASE>
 ▌9▐ <s> <s>;<s>;<LOWER-CASE>
▌12▐ <eszet> "<s><s>";"<eszet><s>";<LOWER-CASE>
 ▌9▐ <z> <z>;<NONE>;<LOWER-CASE>
 order_end

The example is interpreted as follows:

▌1▐ collating elements

¹ character <c> followed by <h> collate as one entity named <ch>

¹ character <C> followed by <h> collate as one entity named <Ch>

¹ character <s> followed by <z> collate as one entity named <eszet>

▌2▐ collating symbols <LOW>, <UPPER-CASE>, <LOWER-CASE> and <NONE> are defined
to be used in relative order definition

▌3▐ up to 3 string comparisons are defined:

¹ first pass starts from the beginning of the strings

¹ second pass starts from the end of the strings, and

¹ third pass starts from the beginning of the strings

▌4▐ the collating weights are defined such that

¹ <LOW> collates before <UPPER-CASE>,

¹ <UPPER-CASE> collates before <LOWER-CASE>,

¹ <LOWER-CASE> collates before <NONE>;

▌5▐ all characters for which collation is not specified here are ordered after <NONE>,
and before <space> in ascending order according to their encoded values

▌6▐ all characters with an encoded value larger than the encoded value of <space>
and lower than the encoded value of <quotation-mark> in the current encoded
character set, collate in ascending order according to their values;

▌7▐ <a> has a:

¹ primary weight of <a>,

¹ secondary weight <NONE>,

¹ tertiary weight of <LOWER-CASE>,

370 VisualAge C++ Programming Guide

Locale Categories

▌8▐ <A> has a:

¹ primary weight of <a>,

¹ secondary weight of <NONE>,

¹ tertiary weight of <UPPER-CASE>,

▌9▐ the weights of <s> and <z> are determined in a similar fashion to <a> and <A>.

▌10▐ <a-acute> has a:

¹ primary weight of <a>,

¹ secondary weight of <a-acute> itself,

¹ tertiary weight of <LOWER-CASE>,

▌11▐ the weights of <a-grave>, <A-acute>, <A-grave>, <ch> and <Ch> are
determined in a similar fashion to <a-acute>.

▌12▐ <eszet> has a:

¹ primary weight determined by replacing each occurence of <eszet> with the
sequence of two <s>'s and using the weight of <s>,

¹ secondary weight determined by replacing each occurence of <eszet> with the
sequence of <eszet> and <s> and using their weights,

¹ tertiary weight is the relative position of <LOWER-CASE>.

Comparison of Strings

Compare the strings s1="aAch" and s2="AaCh" using the above LC_COLLATE
definition:

 1. s1=> "aA<ch>", and s2=> "Aa<Ch>"

 2. first pass:

a. substitute the elements of the strings with their primary weights:

s1=> "<a><a><ch>", s2=> "<a><a><ch>"

b. compare the two strings starting with the first element — they are equal.

 3. second pass:

a. substitute the elements of the strings with their secondary weights:

s1=> "<NONE><NONE><NONE>", s2=>"<NONE><NONE><NONE>"

b. compare the two strings from the last element to the first — they are equal.

 4. third pass:

 Appendix C. Locale Categories 371

Locale Categories

a. substitute the elements of the strings with their third level weights:

s1=> "<LOWER-CASE><UPPER-CASE><LOWER-CASE>", s2=>
"<UPPER-CASE><LOWER-CASE><UPPER-CASE>",

b. compare the two strings starting from the beginning of the strings:

s2 compares lower than s1, because <UPPER-CASE> is before <LOWER-CASE>.

Compare the strings s1="a1sz" and s2=>"a2ss":

1. s1=> "a1<eszet>" and s2= "a2ss";

 2. first pass:

a. substitute the elements of the strings with their primary weights:

s1=> "<a><s><s>", s2=> "<a><s><s>"

b. compare the two strings starting with the first element — they are equal.

 3. second pass:

a. substitute the elements of the strings with their secondary weights:

s1=> "<a-acute><eszet><s>", s2=>"<a-grave><s><s>"

b. compare the two strings from the last element to the first — <s> is before
<ezset>.

 LC_MONETARY Category

This category defines the rules and symbols used to format monetary quantities. The
operands are strings or integers. The following keywords are supported:

copy
Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword should
be present in this category. If the locale is not found, an error is reported and no
locale output is created. The copy keyword cannot specify a locale that also
specifies the copy keyword for the same category.

int_curr_symbol
Specifies the international currency symbol. The operand is a four-character
string, with the first three characters containing the alphabetic international
currency symbol in accordance with those specified in ISO4217 Codes for the

Representation of Currency and Funds. The fourth character is the character
used to separate the international currency symbol from the monetary quantity.

If not defined, it defaults to the empty string ("").

372 VisualAge C++ Programming Guide

Locale Categories

currency_symbol
Specifies the string used as the local currency symbol. If not defined, it defaults
to the empty string ("").

mon_decimal_point
The string used as a decimal delimiter to format monetary quantities.
If not defined it defaults to the empty string ("").

mon_thousands_sep
Specifies the string used as a separator for groups of digits to the left of the
decimal delimiter in formatted monetary quantities. If not defined, it defaults to
the empty string ("").

mon_grouping
Defines the size of each group of digits in formatted monetary quantities. The
operand is a string representing a sequence of integers separated by semicolons.
Each integer specifies the number of digits in each group, with the initial integer
defining the size of the group immediately preceding the decimal delimiter, and
the following integers defining the preceding groups. If the last integer is not
−1, then the size of the previous group (if any) is used repeatedly for the rest of
the digits. If the last integer is −1, then no further grouping is performed. If not
defined, mon_grouping defaults to –1 which indicates that no grouping. An
empty string is interpreted as −1.

positive_sign
A string used to indicate a formatted monetary quantity with a non-negative
value. If not defined, it defaults to the empty string ("").

negative_sign
Specifies a string used to indicate a formatted monetary quantity with a negative
value. If not defined, it defaults to the empty string ("").

int_frac_digits
Specifies an integer representing the number of fractional digits (those to the
right of the decimal delimiter) to be displayed in a formatted monetary quantity
using int_curr_symbol. If not defined, it defaults to −1.

frac_digits
Specifies an integer representing the number of fractional digits (those to the
right of the decimal delimiter) to be displayed in a formatted monetary quantity
using currency_symbol. If not defined, it defaults to −1.

p_cs_precedes
Specifies an integer set to 1 if the currency_symbol or int_curr_symbol
precedes the value for a non-negative formatted monetary quantity, and set to 0
if the symbol succeeds the value. If not defined, it defaults to −1.

 Appendix C. Locale Categories 373

Locale Categories

p_sep_by_space
Specifies an integer set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a non-negative formatted monetary
quantity, set to 1 if a space separates the symbol from the value, and set to 2 if a
space separates the symbol and the string sign, if adjacent. If not defined, it
defaults to −1.

n_cs_precedes
An integer set to 1 if the currency_symbol or int_curr_symbol precedes the
value for a negative formatted monetary quantity, and set to 0 if the symbol
succeeds the value. If not defined, it defaults to −1.

n_sep_by_space
An integer set to 0 if no space separates the currency_symbol or
int_curr_symbol from the value for a negative formatted monetary quantity, set
to 1 if a space separates the symbol from the value, and set to 2 if a space
separates the symbol and the string sign, if adjacent. If not defined, it defaults to
−1.

p_sign_posn
An integer set to a value indicating the positioning of the positive_sign for a
non-negative formatted monetary quantity. The following integer values are
recognized:

0 Parentheses surround the quantity and the currency_symbol or
int_curr_symbol.

1 The sign string precedes the quantity and the currency_symbol or
int_curr_symbol.

2 The sign string succeeds the quantity and the currency_symbol or
int_curr_symbol.

3 The sign string immediately precedes the currency_symbol or
int_curr_symbol.

4 The sign string immediately succeeds the currency_symbol or
int_curr_symbol.

The following value may also be specified, though it is not part of the POSIX
standard.

5 Use debit-sign or credit-sign for p_sign_posn or n_sign_posn.

If not defined, it defaults to −1.

n_sign_posn
An integer set to a value indicating the positioning of the negative_sign for a
negative formatted monetary quantity. The recognized values are the same as for
p_sign_posn. If not defined, it defaults to −1.

374 VisualAge C++ Programming Guide

Locale Categories

left_parenthesis
The symbol of the locale's equivalent of (to form a negative-valued formatted
monetary quantity together with right_parenthesis. If not defined, it defaults
to the the empty string ("").

Note: This is an IBM-specific extension.

right_parenthesis
The symbol of the locale's equivalent of) to form a negative-valued formatted
monetary quantity together with left_parenthesis. If not defined, it defaults
to the the empty string ("");

Note: This is an IBM-specific extension.

debit_sign
The symbol of locale's equivalent of DB to indicate a non-negative-valued
formatted monetary quantity. If not defined, it defaults to the the empty string
("");

Note: This is an IBM-specific extension.

credit_sign
The symbol of locale's equivalent of CR to indicate a negative-valued formatted
monetary quantity. If not defined, it defaults to the the empty string ("");

Note: This is an IBM-specific extension.

Here is an example of the definition of the LC_MONETARY category:

#############
LC_MONETARY
#############

int_curr_symbol "<J><P><Y><space>"
currency_symbol "<yen>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping "3;0"
positive_sign ""
negative_sign "<hyphen-minus>"
int_frac_digits 0
frac_digits 0
p_cs_precedes 1
p_sep_by_space 0
n_cs_precedes 1
n_sep_by_space 0
p_sign_posn 1
n_sign_posn 1
debit_sign "<D>"
credit_sign "<C><R>"

 Appendix C. Locale Categories 375

Locale Categories

left_parenthesis "<left-parenthesis>"
right_parenthesis "<right-parenthesis>"

END LC_MONETARY

 LC_NUMERIC Category

This category defines the rules and symbols used to format non-monetary numeric
information. The operands are strings. The following keywords are recognized:

copy
Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword should
be present in this category. If the locale is not found, an error is reported and no
locale output is created. The copy keyword cannot specify a locale that also
specifies the copy keyword for the same category.

decimal_point
Specifies a string used as the decimal delimiter in numeric, non-monetary
formatted quantities. This keyword cannot be omitted and cannot be set to the
empty string.

thousands_sep
Specifies a string containing the symbol that is used as a separator for groups of
digits to the left of the decimal delimiter in numeric, non-monetary, formatted
quantities.

grouping
Defines the size of each group of digits in formatted non-monetary quantities.
The operand is a string representing a sequence of integers separated by
semicolons. Each integer specifies the number of digits in each group, with the
initial integer defining the size of the group immediately preceding the decimal
delimiter, and the following integers defining the preceding groups. If the last
integer is not −1, then the size of the previous group (if any) is used repeatedly
for the rest of the digits. If the last integer is −1, then no further grouping is
performed. An empty string is interpreted as −1.

Here is an example of how to specify the LC_NUMERIC category:

#############
LC_NUMERIC
#############

decimal_point "<comma>"
thousands_sep "<space>"
grouping "3;0"

END LC_NUMERIC

376 VisualAge C++ Programming Guide

Locale Categories

 LC_TIME Category

The LC_TIME category defines the interpretation of the field descriptors used for
parsing, then formatting, the date and time. Refer to the strftime and strptime
functions in the C Library Reference for a description of format specifiers.

The following keywords are supported:

copy
Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword should
be present in this category. If the locale is not found, an error is reported and no
locale output is created. The copy keyword cannot specify a locale that also
specifies the copy keyword for the same category.

abday
Defines the abbreviated weekday names, corresponding to the %a field
descriptor. The operand consists of seven semicolon-separated strings. The first
string is the abbreviated name corresponding to Sunday, the second string
corresponds to Monday, and so forth.

day
Defines the full weekday names, corresponding to the %A field descriptor. The
operand consists of seven semicolon-separated strings. The first string is the full
name corresponding to Sunday, the second string to Monday, and so forth.

abmon
Defines the abbreviated month names, corresponding to the %b field descriptor.
The operand consists of twelve strings separated by semicolons. The first string
is an abbreviated name that corresponds to January, the second corresponds to
February, and so forth.

mon
Defines the full month names, corresponding to the %B field descriptor. The
operand consists of twelve strings separated by semicolons. The first string is an
abbreviated name that corresponds to January, the second corresponds to
February, and so forth.

d_t_fmt
Defines the appropriate date and time representation, corresponding to the %c
field descriptor. The operand consists of a string, which may contain any
combination of characters and field descriptors.

d_fmt
Defines the appropriate date representation, corresponding to the %x field
descriptor. The operand consists of a string, and may contain any combination
of characters and field descriptors.

 Appendix C. Locale Categories 377

Locale Categories

t_fmt
Defines the appropriate time representation, corresponding to the %X field
descriptor. The operand consists of a string, which may contain any combination
of characters and field descriptors.

am_pm
Defines the appropriate representation of the ante meridian and post meridian
strings, corresponding to the %p field descriptor. The operand consists of two
strings, separated by a semicolon. The first string represents the ante meridian
designation, the last string the post meridian designation.

t_fmt_ampm
Defines the appropriate time representation in the 12-hour clock format with
am_pm, corresponding to the %r field descriptor. The operand consists of a
string and can contain any combination of characters and field descriptors.

era
Defines how the years are counted and displayed for each era (or emperor's
reign) in a locale.

No era is needed if the %E field descriptor modifier is not used for the locale.

For each era, there must be one string in the following format:

direction:offset:start_date:end_date:name:format

where

direction
Either a + or − character. The + character indicates the time axis should be
such that the years count in the positive direction when moving from the
starting date towards the ending date. The − character indicates the time
axis should be such that the years count in the negative direction when
moving from the starting date towards the ending date.

offset
A number of the first year of the era.

start_date
A date in the form yyyy/mm/dd where yyyy, mm and dd are the year,
month and day numbers, respectively, of the start of the era. Years prior to
the year AD 0 are represented as negative numbers. For example, an era
beginning March 5th in the year 100 BC would be represented as -100/3/5.

end_date
The ending date of the era in the same form as the start_date above or one
of the two special values −* or +*. A value of −* indicates the ending date
of the era extends to the beginning of time while +* indicates it extends to
the end of time. The ending date may be either before or after the starting

378 VisualAge C++ Programming Guide

Locale Categories

date of an era. For example, the strings for the Christian eras AD and BC
would be:

+:0:0000/01/01:+*:AD:%EC %Ey
+:1:-0001/12/31:-*:BC:%EC %Ey

name
A string representing the name of the era which is substituted for the %EC
field descriptor.

format
A string for formatting the %EY field descriptor. This string is usually a
function of the %EC and %Ey field descriptors.

The operand consists of one string for each era. If there is more than one era,
strings are separated by semicolons.

era_year
Defines the format of the year in alternate era format, corresponding to the %EY
field descriptor.

era_d_fmt
Defines the format of the date in alternate era notation, corresponding to the %Ex
field descriptor.

alt_digits
Defines alternate symbols for digits, corresponding to the %O field descriptor
modifier. The operand consists of semicolon-separated strings. The first string
is the alternate symbol corresponding to zero, the second string the symbol
corresponding to one, and so forth. A maximum of 100 alternate strings may be
specified. The %O modifier indicates that the string corresponding to the value
specified by the field descriptor is used instead of the value.

 LC_MESSAGES Category

The LC_MESSAGES category defines the format and values for positive and negative
responses.

The following keywords are recognized:

copy
Specifies the name of an existing locale to be used as the source for the
definition of this category. If you specify this keyword, no other keyword
should be present in this category. If the locale is not found, an error is reported
and no locale output is created. The copy keyword cannot specify a locale that
also specifies the copy keyword for the same category.

 Appendix C. Locale Categories 379

Locale Categories

yesexpr
The operand consists of an extended regular expression that describes the
acceptable affirmative response to a question that expects an affirmative or
negative response.

noexpr
The operand consists of an extended regular expression that describes the
acceptable negative response to a question that expects an affirmative or
negative response.

Here is an example that shows how to define the LC_MESSAGES category:

#############
LC_MESSAGES
#############
yes expression is a string that starts with
"SI", "Si" "sI" "si" "s" or "S"
yesexpr "<circumflex><left-parenthesis><left-square-bracket><s><S>\
<right-square-bracket><left-square-bracket><i><I><right-square-bracket>\
<vertical-line><left-square-bracket><s><S><right-square-bracket>\
<right-parenthesis>"

no expression is a string that starts with
"NO", "No" "nO" "no" "N" or "n"
noexpr "<circumflex><left-parenthesis><left-square-bracket><n><N>\
<right-square-bracket><left-square-bracket><o><O><right-square-bracket>\
<vertical-line><left-square-bracket><n><N><right-square-bracket>\
<right-parenthesis>"

END LC_MESSAGES

 LC_TOD Category

The LC_TOD category defines the rules used to define the beginning, end, and duration
of daylight savings time, and the difference between local time and Greenwich Mean
time. This is an IBM extension.

The following keywords are recognized:

copy
Specifies the name of an existing locale to be used as the source for the
definition of this category. If this keyword is specified, no other keyword should
be present in this category. If the locale is not found, an error is reported and no
locale output is created. The copy keyword cannot specify a locale that also
specifies the copy keyword for the same category.

380 VisualAge C++ Programming Guide

Locale Categories

timezone_difference
An integer specifying the time zone difference expressed in minutes. If the local
time zone is west of the Greenwich Meridian, this value must be positive. If the
local time zone is east of the Greenwich Meridian, this value must be negative.
An absolute value greater than 1440 (the number of minutes in a day) for this
keyword indicates that the run time library is to get the time zone difference
from the system.

timezone_name
A string specifying the time zone name such as "PST" (Pacific Standard Time)
specified within quotation marks. The default for this field is a NULL string.

daylight_name
A string specifying the Daylight Saving Time zone name, such as "PDT" (Pacific
Daylight Time), if there is one available. The string must be specified within
quotation marks. If DST information is not available, this is set to NULL, which
is also the default. This field must be filled in if DST information as provided
by the other fields is to be taken into account by the mktime and localtime
functions. These functions ignore DST if this field is NULL.

start_month
An integer specifying the month of the year when Daylight Saving Time comes
into effect. This value ranges from 1 through 12 inclusive, with 1 corresponding
to January and 12 corresponding to December. If DST is not applicable to a
locale, start_month is set to 0, which is also the default.

end_month
An integer specifying the month of the year when Daylight Saving Time ceases
to be in effect. The specifications are similar to those for start_month.

start_week
An integer specifying the week of the month when DST comes into effect.
Acceptable values range from -4 to +4. A value of 4 means the fourth week of
the month, while a value of -4 means fourth week of the month, counting from
the end of the month. Sunday is considered to be the start of the week. If DST
is not applicable to a locale, start_week is set to 0, which is also the default.

end_week
An integer specifying the week of the month when DST ceases to be in effect.
The specifications are similar to those for start_week.

Note: The start_week and end_week need not be used. The start_day and
end_day fields can specify either the day of the week or the day of the month.
If day of month is specified, start_week and end_week become redundant.

start_day
An integer specifying the day of the week or the day of the month when DST
comes into effect. The value depends on the value of start_week. If

 Appendix C. Locale Categories 381

Locale Categories

start_week is not equal to 0, this is the day of the week when DST comes into
effect. It ranges from 0 through 6 inclusive, with 0 corresponding to Sunday
and 6 corresponding to Saturday. If start_week equals 0, start_day is the day
of the month (for the current year) when DST comes into effect. It ranges from
1 through to the last day of the month inclusive. The last day of the month is 31
for January, March, May, July, August, October, and December. It is 30 for
April, June, September, and November. For February, it is 28 on non-leap years
and 29 on leap years. If DST is not applicable to a locale, start_day is set to
0, which is also the default.

end_day
An integer specifying the day of the week or the day of the month when DST
ceases to be in effect. The specifications are similar to those for start_day.

start_time
An integer specifying the number of seconds after 12:00 midnight, local standard
time, when DST comes into effect. For example, if DST is to start at 2:am,
start_time is assigned the value 7200; for 12:00 am (midnight), start_time is
0; for 1:00 am, it is 3600.

end_time
An integer specifying the number of seconds after 12 midnight, local standard
time, when DST ceases to be in effect. The specifications are similar to those
for start_time.

shift
An integer specifying the DST time shift, expressed in seconds. The default is
3600, for 1 hour.

uctname
A string specifying the name to be used for Coordinated Universal Time. If this
keyword is not specified, the uctname will default to "UTC".

Here is an example of how to define the LC_TOD category:

382 VisualAge C++ Programming Guide

Locale Categories

#############
LC_TOD
#############
the time zone difference is 8hrs; the name of the daylight saving
time is PDT, and it starts on the first Sunday of April at
2:00AM and ends on the second Sunday of October at
2:00AM
timezone_difference +480
timezone_name "<P><S><T>"
daylight_name "<P><D><T>"
start_month 4
end_month 10
start_week 1
end_week 2
start_day 1
end_day 30
start_time 7200
end_time 3600
shift 3600
END LC_TOD

 LC_SYNTAX Category

The LC_SYNTAX category defines the variant characters from the portable character set.
LC_SYNTAX is an IBM-specific extension. This category can be queried by the C
library function getsyntx to determine the encoding of a variant character if needed.

Warning: Customizing the LC_SYNTAX category is not recommended. You should
use the LC_SYNTAX values obtained from the charmap file when you use the
LOCALDEF utility.

The operands for the characters in the LC_SYNTAX category accept the single byte
character specification in the form of a symbolic name, the character itself, or the
decimal, octal, or hexadecimal constant. The characters must be specified in the
LC_CTYPE category as a punct character. The values for the LC_SYNTAX characters
must be unique. If symbolic names are used to define the encoding, only the
symbolic names listed for each character should be used.

The code points for the LC_SYNTAX characters are set to the code points specified.
Otherwise, they default to the code points for the respective characters from the
charmap file, if the file is present, or to the code points of the respective characters in
the IBM-850 code page.

The following keywords are recognized:

 Appendix C. Locale Categories 383

Locale Categories

copy
Specifies the name of an existing locale to be used as the source for the
definition of this category. If you specify this keyword, no other keyword
should be present.

If the locale is not found, an error is reported and no locale output is created.
The copy keyword cannot specify a locale that also specifies the copy keyword
for the same category.

backslash
Specifies a string that defines the value used to represent the backslash character.
If this keyword is not specified, the value from the charmap file for the character
<backslash>, <reverse-solidus>, or <SM07> is used, if it is present.

right_brace
Specifies a string that defines the value used to represent the right brace
character. If this keyword is not specified, the value from the charmap file for
the character <right-brace>, <right-curly-bracket>, or <SM14> is used, if it
is present.

left_brace
Specifies a string that defines the value used to represent the left brace character.
If this keyword is not specified, the value from the charmap file for the character
<left-brace>, <left-curly-bracket>, or <SM11> is used, if it is present.

right_bracket
Specifies a string that defines the value used to represent the right bracket
character. If this keyword is not specified, the value from the charmap file for
the character <right-square-bracket>, or <SM08> is used, if it is present.

left_bracket
Specifies a string that defines the value used to represent the left bracket
character. If this keyword is not specified, the value from the charmap file for
the character <left-square-bracket>, or <SM06> is used, if it is present.

circumflex
Specifies a string that defines the value used to represent the circumflex
character. If this keyword is not specified, the value from the charmap file for
the character <circumflex>, <circumflex-accent>, or <SD15> is used, if it is
present.

tilde
Specifies a string that defines the value used to represent the tilde character. If
this keyword is not specified, the value from the charmap file for the character
<tilde>, or <SD19> is used, if it is present.

384 VisualAge C++ Programming Guide

Locale Categories

exclamation_mark
Specifies a string that defines the value used to represent the exclamation mark
character. If this keyword is not specified, the value from the charmap file for
the character <exclamation-mark>, or <SP02> is used, if it is present.

number_sign
Specifies a string that defines the value used to represent the number sign
character. If this keyword is not specified, the value from the charmap file for
the character <number-sign>, or <SM01> is used, if it is present.

vertical_line
Specifies a string that defines the value used to represent the vertical line
character. If this keyword is not specified, the value from the charmap file for
the character <vertical-line>, or <SM13> is used, if it is present.

dollar_sign
Specifies a string that defines the value used to represent the dollar sign
character. If this keyword is not specified, the value from the charmap file for
the character <dollar-sign>, or <SC03> is used, if it is present.

commercial_at
Specifies a string that defines the value used to represent the commercial at
character. If this keyword is not specified, the value from the charmap file for
the character <commercial-at>, or <SM05> is used, if it is present.

grave_accent
Specifies a string that defines the value used to represent the grave accent
character. If this keyword is not specified, the value from the charmap file for
the character <grave-accent>, or <SD13> is used, if it is present.

 Appendix C. Locale Categories 385

Locale Categories

Here is an example of how the LC_SYNTAX category is defined:

#############
LC_SYNTAX
#############

backslash "<backslash>"
right_brace "<right-brace>"
left_brace "<left-brace>"
right_bracket "<right-square-bracket>"
left_bracket "<left-square-bracket>"
circumflex "<circumflex>"
tilde "<tilde>"
exclamation_mark "<exclamation-mark>"
number_sign "<number-sign>"
vertical_line "<vertical-line>"
dollar_sign "<dollar-sign>"
commercial_at "<commercial-at>"
grave_accent "<grave-accent>"

END LC_SYNTAX

386 VisualAge C++ Programming Guide

Regular Expressions

 D Regular Expressions

Regular Expressions (REs) are used to determine if a character string of interest is
matched somewhere in a set of character strings. You can specify more than one
character string for which you wish to determine if a match exists. Regular
Expressions use collating values from the current locale definition file in the matching
process.

The search for a matching sequence starts at the beginning of the string and stops
when the first sequence matching the expression is found. The first sequence is the
one that begins earliest in the string. If the pattern permits matching several
sequences at this starting point, the longest sequence is matched.

To use a regular expression, first compile it with regcomp. You can then use
regexec to compare the compiled expression to other expressions. If an error occurs,
regerror provides information about the error. When you have finished with the
expression, use regfree to free it from memory. All of these functions are described
in more detail in the C Library Reference.

Basic Matching Rules

Within an RE:

¹ An ordinary character matches itself. The simplest form of regular expression is
a string of characters with no special meaning.

¹ A special character preceded by a backslash matches itself. For basic regular
expressions (BREs), the special characters are:

. [\ * ‸ $

For extended regular expressions (EREs), the special characters also include:

() + ? { |

(EREs are supported when you specify the REG_EXTENDED flag.)
¹ A period (.) without a backslash matches any single character. For EREs, it

matches any character except the null character.
¹ An expression within square brackets ([]), called a bracket expression, matches

one or more characters or collating elements.

Note: Do not use multibyte characters in regular expressions.

 Copyright IBM Corp. 1992, 1995 387

Regular Expressions

Bracket Expressions

A bracket expression itself contains one or more expressions that represent characters,
collating symbols, equivalence or character classes, or range expressions:

[string]

Matches any of the characters specified. For example, [abc] matches any
of a, b, or c.

[‸string]

Does not match any of the characters in string. The caret immediately
following the left bracket ([) negates the characters that follow. For
example, [‸abc] matches any character or collating element except a, b,
or c.

[collat_sym–collat_sym]

Matches any collating elements that fall between the two specified collating
symbols, inclusive. The two symbols must be different, and the second
symbol must collate equal to or higher than the first. For example, in the
"C" locale, [r–t] would match any of r, s, or t.

Note: To treat the hyphen (–) as itself, place it either first or last in the
bracket expression, for example: [–rt] or [rt–]. Both of these
expressions would match -, r, or t.

[[.collat_symbl.]]

Matches the collating element represented by the specified single or
multicharacter collating symbol collat_symbl. For example, assuming that
<ch> is the collating symbol for ch in the current locale, [[.ch.]] matches
the character sequence ch. (In contrast, [ch] matches c or h.) If
collat_symbl is not a collating element in the current locale, or if it has no
characters associated with it, it is treated as an invalid expression.

[[=collat_symbl=]]

Matches all collating elements that have a weight equivalent to the specified
single or multicharacter collating symbol collat_symbl. For example,
assuming a, à, and â belong to the same equivalence class, [[=a=]]
matches any of the three. If the collating symbol does not have any
equivalents, it is treated as a collating symbol and matches its corresponding
collating element (as for [..]).

[[:char_class:]]

Matches any characters that belong to the specified character class
char_class. For example, [[:alnum:]] matches all alphanumeric
characters (characters for which isalnum would return nonzero).

388 VisualAge C++ Programming Guide

Regular Expressions

Note: To use the right bracket (]) in a bracket expression, you must specify it
immediately following the left bracket ([) or caret symbol (‸). For example, []x]
matches the characters] and x; [‸]x] does not match] or x; [x]] is not valid.

You can combine characters, special characters, and bracket expressions to form REs
that match multiple characters and subexpressions. When you concatenate the
characters and expressions, the resulting RE matches any string that matches each
component within the RE. For example, cd matches characters 3 and 4 of the string
abcde; ab[[:digit:]] matches ab3 but not abc. For EREs, you can optionally
enclose the concatenation in parentheses.

Additional Syntax Specifiers

You can also use other syntax within an RE to control what it matches:

\(expression\)
Matches whatever expression matches. You only need to enclose an
expression in these delimiters to use operators (such as * or +) on it and to
denote subexpressions for backreferencing (explained later in this section).
For EREs, use the parentheses without the backslashes: (subexpression)

\n Matches the same string that was matched by the nth preceding expression
enclosed in \(\) or, for EREs, (). This is called a backreference. n can
be 1 through 9. For example, \(ab\)\1 matches abab, but does not match
ac. If fewer than n subexpressions precede \n, the backreference is not
valid.

Note: You cannot use backreferences in EREs.

expression*
Matches zero or more consecutive occurrences of what expression
matches. expression can be a single character or collating symbol, a
subexpression, or a backreference (for BREs). For example, [ab]* matches
ab and ababab; b*cd matches characters 3 to 7 of cabbbcdeb.

expression\{m\}
Matches exactly m occurrences of what expression matches. expression

can be a single character or collating symbol, a subexpression, or a
backreference (for BREs). For example, c\{3\} matches characters 5
through 7 of ababccccd (the first 3 c characters only). For EREs, use the
braces without the backslashes: {m}

expression\{m,\}
Matches at least m occurrences of what expression matches. expression

can be a single character or collating symbol, a subexpression, or a
backreference (for BREs). For example, \(ab\)\{3,\} matches abababab,

 Appendix D. Regular Expressions 389

Regular Expressions

but does not match ababac. For EREs, use the braces without the
backslashes: {m,}

expression\{m,u\}
Matches any number of occurrences, between m and u inclusive, of what
expression matches. expression can be a single character or collating
symbol, a subexpression, or a backreference (for BREs). For example,
bc\{1,3\} matches characters 2 through 4 of abccd and characters 3
through 6 of abbcccccd For EREs, use the braces without the backslashes:
{m,u}

‸expression

Matches only sequences that match expression that start at the first
character of a string or after a new-line character if the REG_NEWLINE
flag was specified. For example, ‸ab matches ab in the string abcdef, but
does not match it in the string cdefab. The expression can be the entire
RE or any subexpression of it.

Portability Note: When ‸ is the first character of a subexpression, other
implemenations could interpret it as a literal character. To ensure
portability, avoid using ‸ at the beginning of a subexpression; to use it as a
literal character, precede it with a backslash.

expression$
Matches only sequences that match expression that end the string or that
precede the new-line character if the REG_NEWLINE flag was specified.
For example, ab$ matches ab in the string cdefab but does not match it in
the string abcdef. The expression must be the entire RE.

Portability Note: When $ is the last character of a subexpression, it is
treated as a literal character. Other implementations could interpret is as
described above. To ensure portability, avoid using $ at the end of a
subexpression; to use it as a literal character, precede it with a backslash.

‸expression$
Matches only an entire string, or an entire line if the REG_NEWLINE flag
was specified. For example, ‸abcde$ matches only abcde.

In addition to those listed above, you can also use the following specifiers for EREs
(they are not valid for BREs):

expression+

Matches what one or more occurrences of expression matches. For
example, a+(bc) matches aaaaabc; (bc)+ matches characters 1 through 6
of bcbcbcbb.

390 VisualAge C++ Programming Guide

expression?
Matches zero or one consecutive occurrences of what expression matches.
For example, b?c matches character 2 of acabbb (zero occurrences of b
followed by c).

expression|expression
Matches a string that matches either expression. For example, a((bc)|d)
matches both abd and ad.

Order of precedence

Like C and C++ operators, the RE syntax specifiers are processed in a specific order.
The order of precedence for BREs is described below, from highest to lowest. The
specifiers in each category are also listed in order of precedence.

The order of precedence for EREs is:

Collation-related bracket symbols [==] [::] [..]

Special characters \spec_char

Bracket expressions []

Subexpressions and backreferences \(\) \n

Repetition * \{m\} \{m,\} \{m,n\}

Concatenation

Anchoring ‸ $

Collation-related bracket symbols [==] [::] [..]

Special characters \spec_char

Bracket expressions []

Grouping ()

Repetition * + ? {m} {m,} {m,n}

Concetenation

Anchoring ‸ $

Alternation |

 Appendix D. Regular Expressions 391

392 VisualAge C++ Programming Guide

Name Mapping

 E Mapping

This appendix describes how VisualAge C++ compiler maps data types into storage
and the alignment of each data type and the mapping of its bits. The mapping of
identifier names is also discussed, as is the encoding scheme used by the compiler for
encoding or mangling C++ function names.

 Name Mapping

To prevent conflicts between user-defined identifiers (variable names or functions)
and VisualAge C++ library functions, do not use the name of any library function or
external variable defined in the library as a user-defined function.

If you statically link to the VisualAge C++ runtime libraries (using the /Gd- option),
all external names beginning with Dos, Vio, or Kbd (in the case given) become
reserved external identifiers. These names are not reserved if you dynamically link to
the libraries.

To prevent conflicts with internal names, do not use an underscore at the start of any
of your external names; these identifiers are reserved for use by the compiler and
libraries. The internal VisualAge C++ identifier names that are not listed in either the
Language Reference or this manual all begin with an underscore (_).

If you have an application that uses a restricted name as an identifier, change your
code or use a macro to globally redefine the name and avoid conflicts. You can also
use the #pragma map directive to convert the name, but this directive is not portable
outside of SAA.

A number of functions and variables that existed in the IBM C/2 and Microsoft C
Version 6.0 compilers are implemented in the VisualAge C++ product, but with a
preceding underscore to conform to ANSI naming requirements. When you run the
VisualAge C++ compiler in extended mode (which is the default) and include the
appropriate library header file, the original names are mapped to the new names for
you. For example, the function name putenv is mapped to _putenv. When you
compile in any other mode, this mapping does not take place.

Note: Because the name timezone is used as a structure field by the OS/2 operating
system, the variable _timezone is not mapped to timezone.

 Copyright IBM Corp. 1992, 1995 393

Demangling C++ Function Names

Demangling (Decoding) C++ Function Names

When the VisualAge C++ compiler compiles a program, it encodes all function
names and certain other identifiers to include type and scoping information. This
encoding process is called mangling. The linker uses the mangled names to ensure
type-safe linkage. These mangled names are used in the object files and in the final
executable file. Tools that use these files must use the mangled names and not the
original names used in the source code.

VisualAge C++ provides two methods of converting mangled names to the original
source code names, demangling functions and the CPPFILT utility.

Using the Demangling Functions

The runtime library contains a small class hierarchy of functions that you can use to
demangle names and examine the resulting parts of the name. It also provides a
C-language interface you can use in C programs. The functions use no external C++
features.

The demangling functions are available in both the static (.LIB) and dynamic (.DLL)
versions of the library. The interface is documented in the <demangle.h> header file.

Using the demangling functions, you can write programs to convert a mangled name
to a demangled name and to determine characteristics of that name, such as its type
qualifiers or scope. For example, given the mangled name of a function, the program
returns the demangled name of the function and the names of its qualifiers. If the
mangled name refers to a class member, you can determine if it is static, const, or
volatile. You can also get the whole text of the mangled name.

To demangle a name, which is represented as a character array, create a dynamic
instance of the Name class and provide the character string to the class's constructor.
For example, to demangle the name f__1XFi, create:

 char *rest;
Name *name = Demangle("f__1XFi", rest);

The demangling functions classify names into five categories: function names,
member function names, special names, class names, and member variable names.
After you construct an instance of class Name, you can use the Kind member function
of Name to determine what kind of Name the instance is. Based on the kind of name
returned, you can ask for the text of the different parts of the name or of the entire
name.

394 VisualAge C++ Programming Guide

Demangling C++ Function Names

For the mangled name f__1XFi, you can determine:

name->Kind() == MemberFunction
((MemberFunctionName *) name)->Scope()->Text() is "X"
((MemberFunctionName *) name)->RootName() is "f"
((MemberFunctionName *) name)->Text() is "X::f(int)"

If the character string passed to the Name constructor is not a mangled name, the
Demangle function returns NULL.

For further details about the demangling functions and their C++ and C interfaces,
refer to the information contained in the <demangle.h> header file. If you installed
using the defaults, this header file should be in the INCLUDE directory under the
main VisualAge C++ installation directory.

Using the CPPFILT Utility

The VisualAge C++ product also provides the CPPFILT utility to convert mangled
names to demangled names. You can use this utility with:

¹ An ASCII text file to substitute demangled names for any mangled names found
in the text.

¹ A binary (object or library) file to produce a list of demangled names including
exported, public, and referenced symbol names.

All CPPFILT output is sent to stdout. You can use the standard OS/2 redirection
symbols to redirect the output to a file.

One of the applications of this utility is creating module definition files for your C++
DLLs. Because functions in the DLL have mangled names, when you list the
EXPORTS in your .DEF, you must use the mangled names. You can use the CPPFILT
utility to extract all the names from the object module for you, copy the ones you
want to export into your .DEF file, and link your object module into a DLL.

 Appendix E. Mapping 395

Demangling C++ Function Names

The CPPFILT syntax is:

 ┌ ┐───────────── ┌ ┐──────────────
►►──CPPFILT─ ───6 ┴┬ ┬───────── ───6 ┴┬ ┬────────── ────────────────────►◄

└ ┘──/option └ ┘─filename─

where option is one or more CPPFILT options and filename is the name of the file
containing the mangled names. If you do not specify a filename, CPPFILT reads
the input from stdin. If you specify the /B option to run CPPFILT in binary mode,
you must specify a filename. The file specified must be in the current directory
unless you specify the full path name. CPPFILT will also search for library files
along the paths specified in the LIB environment variable if it cannot find them in the
current directory.

You can specify options in upper- or lowercase and precede them with either a slash
(for example, /B) or a dash (-B). By default, all options are off.

Three options apply to both text and binary files:

/H or /? Display online help on the CPPFILT command syntax and options.
/Q Suppress the logo and copyright notice display.
/S Demangle compiler-generated symbol names.

The following options apply only to text files:

/C Demangle stand-alone class names, meaning names that do not appear
within the context of a function name or member variable. The compiler
does not usually produce these names. For example, Q2_1X1Y would be
demangled as X::Y if you specify /C. Otherwise it is not demangled.

/M Produce a symbol map containing a list of the mangled names and the
corresponding demangled names. The symbol map is displayed after the
usual CPPFILT output.

/T Replace each mangled name in the text with its demangled name followed
by the mangled name. (The default is to replace the mangled name with the
demangled name only.)

/W width Set the width of the field for demangled names in the output to width
characters. If a demangled name is shorter than width, it is padded to the
right with blanks; if longer, it is truncated to width characters. If you do
not specify the /W option, there is no fixed width for the field.

396 VisualAge C++ Programming Guide

Demangling C++ Function Names

The following options apply only to binary (object and library) files:

/B Run in binary mode. If you do not explicitly specify this option, CPPFILT
runs in text mode.

/N Generate the NONAME keyword, used in EXPORTS statements in module
definition files, to indicate that the exported names should be referenced by
their ordinal numbers only and not by name. Use this option with the /O
option.

/O [ord] Generate an ordinal number for each demangled name. You can optionally
specify the ordinal number, ord, that CPPFILT should use as the first
number. The ordinals are generated with the @ symbol and are consistent
with the module definition file syntax. For example, if you specify
/O 1000, the output for the first name might look like:

;ILinkedSequenceImpl::isConsistent() const
isConsistent__19ILinkedSequenceImplCFv @1000

If you specify /O 1000 /N, the output for the same name would be:

;ILinkedSequenceImpl::isConsistent() const
isConsistent__19ILinkedSequenceImplCFv @1000 NONAME

/P Include all public (COMDAT, COMDEF, or PUBDEF) symbols in the
output. Note that if a COMDAT symbol occurs more than once, only the
first occurrence is included in the output. Subsequent occurrences of the
symbol appear in the output as comments.

/R Include all referenced (EXTDEF) symbols in the output.

/X Include all exported (EXPDEF) symbols in the output.

Note: If you do not specify any of /P, /R, or /X options in binary mode, the output
includes only the demangled library and object names without any symbol names.

 Appendix E. Mapping 397

Demangling C++ Function Names

For example, given the command:

CPPFILT /B /P /O 1000 /N C:\IBMCPP\LIB\DDE4CC.LIB

CPPFILT would produce output like the following:

;From library: c:\ibmcpp\lib\dde4cc.lib
 ;From object file: C:\ibmcpp\src\IILNSEQ.C
;PUBDEFs (Symbols available from object file):

 ;ILinkedSequenceImpl::setToPrevious(ILinkedSequenceImpl::Node*&) const
 setToPrevious__19ILinkedSequenceImplCFRPQ2_19ILinkedSequenceImpl4Node @1000 NONAME
 ;ILinkedSequenceImpl::allElementsDo(void*,void*) const
 allElementsDo__19ILinkedSequenceImplCFPvT1 @1001 NONAME
 ;ILinkedSequenceImpl::isConsistent() const
 isConsistent__19ILinkedSequenceImplCFv @1002 NONAME
 ;ILinkedSequenceImpl::setToNext(ILinkedSequenceImpl::Node*&) const
 setToNext__19ILinkedSequenceImplCFRPQ2_19ILinkedSequenceImpl4Node @1003 NONAME
 ;ILinkedSequenceImpl::addAsNext(ILinkedSequenceImpl::Node*, ILinkedSequenceImpl::Node*)
 addAsNext__19ILinkedSequenceImplFPQ2_19ILinkedSequenceImpl4NodeT1 @1004 NONAME
 ;From object file: C:\ibmcpp\src\IITBSEQ.C
;PUBDEFs (Symbols available from object file):

 ;ITabularSequenceImpl::setToPrevious(ITabularSequenceImpl::Cursor&) const
 setToPrevious__20ITabularSequenceImplCFRQ2_20ITabularSequenceImpl6Cursor @1034 NONAME
 ;ITabularSequenceImpl::allElementsDo(void*)
 allElementsDo__20ITabularSequenceImplFPv @1035 NONAME
 ;ITabularSequenceImpl::removeAll(void*,void*)
 removeAll__20ITabularSequenceImplFPvT1 @1036 NONAME
 ;ITabularSequenceImpl::addAllFrom(const ITabularSequenceImpl&)
 addAllFrom__20ITabularSequenceImplFRC20ITabularSequenceImpl @1037 NONAME
 ;From object file: IIAVLKSS.C
;PUBDEFs (Symbols available from object file):

 ;IAvlKeySortedSetImpl::allElementsDo(void*,void*) const
 allElementsDo__20IAvlKeySortedSetImplCFPvT1 @1080 NONAME
 ;IAvlKeySortedSetImpl::isFirst
(const IAvlKeySortedSetImpl::Node*) const
 isFirst__20IAvlKeySortedSetImplCFPCQ2_20IAvlKeySortedSetImpl4Node @1081 NONAME

;IAvlKeySortedSetImpl::setToPosition(unsigned long,IAvlKeySortedSetImpl::Node*&) const
 setToPosition__20IAvlKeySortedSetImplCFUlRPQ2_20IAvlKeySortedSetImpl4Node @1082 NONAME
 ;IAvlKeySortedSetImpl::locateOrAddElementWithKey(const void*)
 locateOrAddElementWithKey__20IAvlKeySortedSetImplFPCv @1083 NONAME

...

398 VisualAge C++ Programming Guide

Data Mapping

 Data Mapping

The following section lists each data format and its equivalent C type in
VisualAge C++ product, including the alignment and mapping for each.

Automatic Variables: When optimization is turned off (/O-), automatic variables
have the same mapping as other variables, but they are mapped on the stack
instead of in a data segment. Because memory on the stack is constantly
reallocated on the stack, automatic variables are not guaranteed to be

retained after the return of the function that used them.

When optimization is on, automatic variables are mapped as follows:

Size of Object Alignment

1-byte Byte-aligned
2-byte Word-aligned
3-byte and greater Doubleword-aligned

Note that the variables are ordered to minimize padding.

In VisualAge C++ product, a word consists of 2 bytes (or 16 bits) and a doubleword

consists of 4 bytes (32 bits).

 1. Single-Byte Character

Type signed char and unsigned char

Alignment Byte-aligned.

Storage mapping Stored in 1 byte.

 2. Two-Byte Integer

Type short and its signed and unsigned counterparts

Alignment Word-aligned.

Storage mapping Byte-reversed, for example, 0x3B2C (where 2C is the least
significant byte and 3B is the most significant byte) is
represented in storage as:

Toward high memory →

byte 0 byte 1

2C 3B

 Appendix E. Mapping 399

Data Mapping

 3. Four-Byte Integer

Type long, int, and their signed and unsigned counterparts

Alignment Doubleword-aligned.

Storage mapping Byte-reversed, for example, 0x4A5D3B2C (where 2C is the
least significant byte and 4A is the most significant byte) is
represented in storage as:

Toward high memory →

Note on IEEE Format:

In IEEE format, a floating point number is represented in terms of sign
(S), exponent (E), and fraction (F):

(-1)S x 2E x 1.F

In the diagrams that follow, the first two rows number the bits. Read
them vertically from top to bottom. The last row indicates the storage of
the parts of the number.

byte 0 byte 1 byte 2 byte 3

2C 3B 5D 4A

400 VisualAge C++ Programming Guide

Data Mapping

4. Four-Byte Floating Point (IEEE Format)

Type float

Alignment Doubleword-aligned.

Bit mapping In the internal representation, there is 1 bit for the sign (S), 8
bits for the exponent (E), and 23 bits for the fraction (F).
The bits are mapped with the fraction in bit 0 to bit 22, the
exponent in bit 23 to bit 30, and the sign in bit 31:

3 32222222 2221111111111
1 09876543 21098765432109876543210

S EEEEEEEE FFFFFFFFFFFFFFFFFFFFFFF

Storage mapping The storage mapping is as follows:

Toward high memory →

byte 0 byte 1 byte 2 byte 3

76543210

111111
54321098

22221111
32109876

33222222
10987654

FFFFFFFF FFFFFFFF EFFFFFFF SEEEEEEE

 Appendix E. Mapping 401

Data Mapping

5. Eight-Byte Floating Point (IEEE Format)

Type double

Alignment Doubleword-aligned on the 80386

Bit mapping In the internal representation, there is 1 bit for the sign (S),
11 bits for the exponent (E), and 52 bits for the fraction (F).
The bits are mapped with the fraction in bit 0 to bit 51, the
exponent in bit 52 to bit 62, and the sign in bit 63:

6 66655555555 554444444444333333333322222222221111111111
3 21098765432 1098765432109876543210987654321098765432109876543210

S EEEEEEEEEEE FF

Storage mapping The storage mapping is as follows:

Toward high memory →

Toward high memory →

byte 0 byte 1 byte 2 ...

76543210

111111
54321098

22221111
32109876

...

FFFFFFFF FFFFFFFF FFFFFFFF ...

byte 5 byte 6 byte 7

44444444
76543210

55555544
54321098

66665555
32109876

FFFFFFFF EEEEFFFF SEEEEEEE

402 VisualAge C++ Programming Guide

Data Mapping

6. Ten-Byte Floating Point in Sixteen-Byte Field (IEEE Format)

Type long double

Alignment Doubleword-aligned on the 80386

Bit mapping In the internal representation, there is 1 bit for the sign (S),
15 bits for the exponent (E), and 64 bits for the fraction (F).
The bits are mapped with the fraction in bit 0 to bit 63, the
exponent in bit 64 to bit 78, and the sign in bit 79:

7 777777777666666
9 876543210987654

S EEEEEEEEEEEEEEE

666655555555554444444444333333333322222222221111111111
3210987654321098765432109876543210987654321098765432109876543210

FF

Storage mapping The storage mapping is as follows:

Toward high memory →

Toward high memory →

byte 0 byte 1 byte 2 ...

76543210

111111
54321098

22221111
32109876

...

FFFFFFFF FFFFFFFF FFFFFFFF ...

byte 7 byte 8 byte 9

66666555
43210987

77666666
10987654

77777777
98765432

FFFFFFFF EEEEEEEE SEEEEEEE

 Appendix E. Mapping 403

Data Mapping

7. Null-Terminated Character Strings

Type char string[n]

Size Length of string (not including null).

Alignment Byte-aligned. If the length of the string is greater than a
doubleword, the string is doubleword-aligned.

Storage mapping The string "STRING" is stored in adjacent bytes as:

Toward high memory →

8. Fixed-Length Arrays Containing Simple Data Types

Type The corresponding VisualAge C++ declaration depends on
the simple data type in the array. For an array of int, for
example, you would use something like:

 int int_array[n];

For an array of float, you would use something like:

 float float_array[n];

Size n * (s + p), where n is the number of elements in the
array, s is the size of each element, and p is the alignment
padding.

Alignment The alignment is the same as that of the simple data type of
the array elements. For instance, an array of short elements
would be word-aligned, while an array of int elements
would be doubleword-aligned. If the length of the array is
greater than a doubleword, the array is doubleword-aligned.

Storage mapping The first element of the array is placed in the first storage
position. For multidimensional arrays, row-major ordering is
used.

byte

0

byte

1

byte

2

byte

3

byte

4

byte

5

byte

6

'S' 'T' 'R' 'I' 'N' 'G' '\0'

404 VisualAge C++ Programming Guide

Data Mapping

 9. Aligned Structures

Type struct

Size Sum of the sizes for each type in the struct plus padding
for alignment.

Alignment The first element of the structure is aligned according to the
alignment rule of the element that has the most restrictive
alignment rule. If the length of the structure is greater than
a doubleword, the structure is doubleword-aligned. The
alignment of the individual members is not changed. In the
following example, types char, short, and float are used
in the struct. Because float must be aligned on the
doubleword boundary, and because this is the most
restrictive alignment rule, the first element must be aligned
on the doubleword boundary even though it is only a char.

Note: The first element will not necessarily occupy a
doubleword, but it will be aligned on it.

struct y {
char char1; /* aligns on doubleword */
short short1; /* aligns on word */
char char2; /* aligns on byte */
float float1; /* aligns on doubleword */
char char3 /*aligns on byte */

 };

Storage mapping The struct is stored as follows:

Toward high memory →

Toward high memory →

Toward high memory →

Note: This mapping is also true for aligned structures in
C++ as long as the structure does not contain virtual base
classes or virtual functions.

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5

char1 pad short1 short1 char2 pad

byte 6 byte 7 byte 8 byte 9 byte 10

pad pad float1 float1 float1

byte 11 byte 12 byte 13 byte 14 byte 15

float1 char3 pad pad pad

 Appendix E. Mapping 405

Data Mapping

10. Unaligned or Packed Structures

Type The definition of the structure variable is preceded by the
keyword _Packed, or the #pragma pack directive or /Sp
option is used. For instance, the following definition would
create a packed struct called mystruct with the type
struct y (defined above):

_Packed struct y mystruct

Size The sum of the sizes of each type that makes up the struct.

Storage mapping When the _Packed keyword, the #pragma pack(1)
directive, or /Sp(1) option is used, the structure mystruct is
stored as follows:

Toward high memory →

Toward high memory →

When #pragma pack(2) or the /Sp(2) option is used,
mystruct is stored as follows:

Toward high memory →

Toward high memory →

Note: This mapping is also true for aligned structures in
C++ as long as the structure does not contain virtual base
classes or virtual functions.

byte 0 byte 1 byte 2 byte 3 byte 4

char1 short1 short1 char2 float1

byte 5 byte 6 byte 7 byte 8

float1 float1 float1 char3

byte 0 byte 1 byte 2 byte 3 byte 4 byte 5

char1 pad short1 short1 char2 pad

byte 6 byte 7 byte 8 byte 9 byte 10 byte 11

float1 float1 float1 float1 char3 pad

406 VisualAge C++ Programming Guide

Data Mapping

11. Arrays of Structures

Type The definition for an array of struct would look like:

struct y mystruct_array[n]

The definition of an array of _Packed struct would look
like:

_Packed struct y mystruct_array[n]

Alignment Each structure is aligned according to the structure alignment
rules. This may cause a fixed-length gap between
consecutive structures. In the case of packed structures,
there is no padding.

Storage mapping The first element of the array is placed in the first storage
position. Row-major ordering is used for multidimensional
arrays.

Note: This mapping is also true for aligned structures in
C++ as long as the structure does not contain virtual base
classes or virtual functions.

12. Structures Containing Bit Fields

Type struct

Size The sum of the sizes for each type in the struct plus
padding for alignment.

Alignment Each structure is aligned according to the structure alignment
rules.

 Appendix E. Mapping 407

Data Mapping

Storage mapping Given the following structure:

struct s {
 char a;
 int b1:4;
 int b2:6;
 int b3:1;
 int :0;
 int b4:7;
 char c;
 }

struct s would be stored as follows:

┌────────┬────────┬────────┬────────┬────────┬────────┐
│ byte │ byte │ byte │ byte │ byte │ byte │
│ 0 │ 1 │ 2 │ 3 │ 4 │ 5 │
├────────┼────────┼────────┼────────┼────────┼────────┤
│ │ 1 │ 1 1 2 3 3 4 4 bits
0 8 2 │ 8 9 4 2 9 0 8 used
├────────┼────┬───┴─┬─┬────┼────────┼──────┬─┼────────│
│ a │ b1 │ b2 │b│pad │ pad │ b4 │ │ c │
│ │ │ │3│ │ │ │ │ │
└────────┴────┴─────┴─┴────┴────────┴──────┴─┴────────┘
 &
 │
 pad

Notes:

a. The second row of the table counts the number of bits
used and should be read vertically top-to-bottom. Bits
are allocated from least-significant to most-significant
within each byte. In the diagram above, the
least-significant bit is on the left.

b. This mapping is also true for aligned structures in C++
as long as the structure does not contain virtual base
classes or virtual functions.

408 VisualAge C++ Programming Guide

 Glossary

This glossary defines terms and abbreviations that
are used in this book. Included are terms and
definitions from the following sources:

¹ American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies may be
purchased from the American National
Standards Institute, 1430 Broadway, New
York, New York 10018. Such definitions are
indicated by the symbol ANSI after the
definition.

¹ IBM Dictionary of Computing, SC20-1699.
These definitions are indicated by the
registered trademark IBM after the definition.

¹ X/Open CAE Specification. Commands and

Utilities, Issue 4. July, 1992. These
definitions are indicated by the symbol
X/Open after the definition.

¹ ISO/IEC 9945-1:1990/IEEE POSIX

1003.1-1990. These definitions are indicated
by the symbol ISO.1 after the definition.

¹ The Information Technology Vocabulary,
developed by Subcommittee 1, Joint
Technical Committee 1, of the International
Organization for Standardization and the
International Electrotechnical Commission
(ISO/IEC JTC1/SC1). Definitions of
published parts of this vocabulary are
identified by the symbol ISO-JTC1 after the
definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol ISO

Draft after the definition, indicating that final
agreement has not yet been reached among
the participating National Bodies of SC1.

A
abstract class. (1) A class with at least one
pure virtual function that is used as a base class
for other classes. The abstract class represents a
concept; classes derived from it represent
implementations of the concept. You cannot have
a direct object of an abstract class. See also base

class. (2) A class that allows polymorphism.
There can be no objects of an abstract class; they
are only used to derive new classes.

abstraction (data). A data type with a private
representation and a public set of operations. The
C++ language uses the concept of classes to
implement data abstraction.

access. An attribute that determines whether or
not a class member is accessible in an expression
or declaration.

access specifier. One of the C++ keywords:
public, private, and protected, used to define the
access to a member.

additional heap. (1) A Language Environment

heap created and controlled by a call to
CEECRHP. See also below heap, anywhere heap,

and initial heap.

address space. (1) The range of addresses
available to a computer program. ANSI. (2) The
complete range of addresses that are available to
a programmer. See also virtual address space.
(3) In the AIX operating system, the code, stack,
and data that are accessible by a process.
(4) The area of virtual storage available for a
particular job. (5) The memory locations that
can be referenced by a process. X/Open. ISO.1.

aggregate. (1) An array or a structure. (2) A
compile-time option to show the layout of a
structure or union in the listing. (3) An array or
a class object with no private or protected
members, no constructors, no base classes, and no
virtual functions. (4) In programming languages,
a structured collection of data items that form a
data type. ISO-JTC1.

alert. (1) A message sent to a management
services focal point in a network to identify a
problem or an impending problem. IBM. (2) To

 Copyright IBM Corp. 1992, 1995 409

cause the user's terminal to give some audible or
visual indication that an error or some other event
has occurred. When the standard output is
directed to a terminal device, the method for
alerting the terminal user is unspecified. When
the standard output is not directed to a terminal
device, the alert is accomplished by writing the
alert character to standard output (unless the
utility description indicates that the use of
standard output produces undefined results in this
case). X/Open.

alignment. The storing of data in relation to
certain machine-dependent boundaries. IBM.

American National Standards Institute. See
ANSI.

angle brackets. The characters < (left angle
bracket) and > (right angle bracket). When used
in the phrase “enclosed in angle brackets,” the
symbol < immediately precedes the object to be
enclosed, and > immediately follows it. When
describing these characters in the portable
character set, the names <less-than-sign> and
<greater-than-sign> are used. X/Open.

ANSI (American National Standards

Institute). An organization consisting of
producers, consumers, and general interest groups,
that establishes the procedures by which
accredited organizations create and maintain
voluntary industry standards in the United States.
ANSI.

anywhere heap. The VisualAge C++ heap
controlled by the ANYHEAP run-time option. It
contains library data, such as VisualAge C++
control blocks and data structures not normally
accessible from user code. The anywhere heap
may reside above 16M. See also below heap,

additional heap, initial heap.

application. (1) The use to which an
information processing system is put; for
example, a payroll application, an airline
reservation application, a network application.
IBM. (2) A collection of software components
used to perform specific types of user-oriented
work on a computer. IBM.

application program. A program written for or
by a user that applies to the user's work, such as
a program that does inventory control or payroll.
IBM.

argument. (1) A parameter passed between a
calling program and a called program. IBM.
(2) In a function call, an expression that
represents a value that the calling function passes
to the function specified in the call. Also called
parameter. (3) In the shell, a parameter passed
to a utility as the equivalent of a single string in
the argv array created by one of the exec

functions. An argument is one of the options,
option-arguments, or operands following the
command name. X/Open.

array. In programming languages, an aggregate
that consists of data objects, with identical
attributes, each of which may be uniquely
referenced by subscripting. IBM.

array element. A data item in an array. IBM.

ASCII (American National Standard Code for

Information Interchange). The standard code,
using a coded character set consisting of 7-bit
coded characters (8 bits including parity check),
that is used for information interchange among
data processing systems, data communication
systems, and associated equipment. The ASCII
set consists of control characters and graphic
characters. IBM.

Note: IBM has defined an extension to ASCII
code (characters 128-255).

assembler user exit. In the Language

Environment a routine to tailor the characteristics
of an enclave prior to its establishment.

automatic data. Data that does not persist after
a routine has finished executing. Automatic data
may be automatically initialized to a certain value
upon entry and reentry to a routine.

automatic storage. Storage that is allocated on
entry to a routine or block and is freed on the
subsequent return. Sometimes referred to as stack

storage or dynamic storage.

B
backslash. The character \. This character is
named <backslash> in the portable character set.

base class. A class from which other classes are
derived. A base class may itself be derived from
another base class. See also abstract class.

410 VisualAge C++ Programming Guide

based on. The use of existing classes for
implementing new classes.

below heap. The VisualAge C++ heap
controlled by the BELOWHEAP runtime option,
which contains library data, such as
VisualAge C++ control block and data structures
not normally accessible from user code. Below
heap always resides below 16M. See also
anywhere heap, initial heap, additional heap.

binary stream. (1) An ordered sequence of
untranslated characters. (2) A sequence of
characters that corresponds on a one-to-one basis
with the characters in the file. No character
translation is performed on binary streams. IBM.

bit field. A member of a structure or union that
contains a specified number of bits. IBM.

block. (1) In programming languages, a
compound statement that coincides with the scope
of at least one of the declarations contained
within it. A block may also specify storage
allocation or segment programs for other
purposes. ISO-JTC1. (2) A string of data
elements recorded or transmitted as a unit. The
elements may be characters, words or physical
records. ISO Draft. (3) The unit of data
transmitted to and from a device. Each block
contains one record, part of a record, or several
records.

brackets. The characters [(left bracket) and]
(right bracket), also known as square brackets.
When used in the phrase “enclosed in (square)
brackets” the symbol [immediately precedes the
object to be enclosed, and] immediately follows
it. When describing these characters in the
portable character set, the names <left-bracket>
and <right-bracket> are used. X/Open.

breakpoint. A point in a computer program
where execution may be halted. A breakpoint is
usually at the beginning of an instruction where
halts, caused by external intervention, are
convenient for resuming execution. ISO Draft.

built-in. (1) A function that the compiler will
automatically inline instead of making the
function call, unless the programmer specifies not
to inline. (2) In programming languages,
pertaining to a language object that is declared by
the definition of the programming language; for
example the built-in function SIN in PL/I, the

predefined data type INTEGER in FORTRAN.
ISO-JTC1. Synonymous with predefined. IBM.

C
C++ class library. See class library.

C++ library. A system library that contains
common C++ language subroutines for file access,
memory allocation, and other functions.

call. To transfer control to a procedure, program,
routine, or subroutine. IBM.

caller. A routine that calls another routine.

carriage-return character. A character that in
the output stream indicates that printing should
start at the beginning of the same physical line in
which the carriage-return character occurred. The
carriage-return is the character designated by '\r'
in the C and C++ languages. It is unspecified
whether this character is the exact sequence
transmitted to an output device by the system to
accomplish the movement to the beginning of the
line. X/Open.

CASE (Computer-Aided Software

Engineering). A set of tools or programs to help
develop complex applications. IBM.

cast. In the C and C++ languages, an expression
that converts the type of the operand to a
specified data type (the operator). IBM.

character. (1) A letter, digit, or other symbol
that is used as part of the organization, control, or
representation of data. A character is often in the
form of a spatial arrangement of adjacent or
connected strokes. ANSI. (2) A sequence of one
or more bytes representing a single graphic
symbol or control code. This term corresponds to
the ISO C standard term multibyte character

(multi-byte character), where a single-byte
character is a special case of the multi-byte
character. Unlike the usage in the ISO C
standard, character here has no necessary
relationship with storage space, and byte is used
when storage space is discussed. X/Open. ISO.1.

character array. An array of type char. X/Open.

character class. A named set of characters
sharing an attribute associated with the name of

 Glossary 411

the class. The classes and the characters that they
contain are dependent on the value of the
LC_CTYPE category in the current locale.
X/Open.

character constant. (1) A constant with a
character value. IBM. (2) A string of any of the
characters that can be represented, usually
enclosed in apostrophes. IBM. (3) In some
languages, a character enclosed in apostrophes.
IBM.

character set. (1) A finite set of different
characters that is complete for a given purpose;
for example, the character set in ISO Standard
646, 7-bit Coded Character Set for Information
Processing Interchange. ISO Draft. (2) All the
valid characters for a programming language or
for a computer system. IBM. (3) A group of
characters used for a specific reason; for example,
the set of characters a printer can print. IBM.
(4) See also portable character set.

character string. A contiguous sequence of
characters terminated by and including the first
null byte. X/Open.

child. A node that is subordinate to another
node in a tree structure. Only the root node is
not a child.

class. (1) A C++ aggregate that may contain
functions, types, and user-defined operators in
addition to data. Classes may be defined
hierarchically, allowing one class to be derived
from another, and may restrict access to its
members. (2) A user-defined data type. A class
data type can contain both data representations
(data members) and functions (member
functions).

class library. A collection of C++ classes.

class name. A unique identifier of a class type
that becomes a reserved word within its scope.

class template. A blueprint describing how a set
of related classes can be constructed.

C library. A system library that contains
common C language subroutines for file access,
string operators, character operations, memory
allocation, and other functions. IBM.

client program. A program that uses a class.
The program is said to be a client of the class.

COBOL (Common Business-Oriented

Language). A high-level language, based on
English, that is primarily used for business
applications.

coded character set. (1) A set of graphic
characters and their code point assignments. The
set may contain fewer characters than the total
number of possible characters: some code points
may be unassigned. IBM. (2) A coded set whose
elements are single characters; for example, all
characters of an alphabet. ISO Draft.
(3) Loosely, a code. ANSI.

code page. (1) An assignment of graphic
characters and control function meanings to all
code points; for example, assignment of
characters and meanings to 256 code points for
an 8-bit code, assignment of characters and
meanings to 128 code points for a 7-bit code.
(2) A particular assignment of hexadecimal
identifiers to graphic characters.

code point. (1) A 1-byte code representing one
of 256 potential characters. (2) An identifier in
an alert description that represents a short unit of
text. The code point is replaced with the text by
an alert display program.

codeset. Synonym for code element set. IBM.

collating element. The smallest entity used to
determine the logical ordering of character or
wide-character strings. A collating element
consists of either a single character, or two or
more characters collating as a single entity. The
value of the LC_COLLATE category in the
current locale determines the current set of
collating elements. X/Open.

collating sequence. (1) A specified arrangement
used in sequencing. ISO-JTC1. ANSI. (2) An
ordering assigned to a set of items, such that any
two sets in that assigned order can be collated.
ANSI. (3) The relative ordering of collating
elements as determined by the setting of the
LC_COLLATE category in the current locale.
The character order, as defined for the
LC_COLLATE category in the current locale,
defines the relative order of all collating elements,
such that each element occupies a unique position
in the order. This is the order used in ranges of

412 VisualAge C++ Programming Guide

characters and collating elements in regular
expressions and pattern matching. In addition,
the definition of the collating weights of
characters and collating elements uses collating
elements to represent their respective positions
within the collation sequence.

collation. The logical ordering of character or
wide-character strings according to defined
precedence rules. These rules identify a collation
sequence between the collating elements, and
such additional rules that can be used to order
strings consisting or multiple collating elements.
X/Open.

collection. (1) An abstract class without any
ordering, element properties, or key properties.
All abstract classes are derived from collection.
(2) In a general sense, an implementation of an
abstract data type for storing elements.

Collection Class Library. A set of classes that
provide basic functions for collections, and can be
used as base classes.

command. A request to perform an operation or
run a program. When parameters, arguments,
flags, or other operands are associated with a
command, the resulting character string is a single
command.

compilation unit. (1) A portion of a computer
program sufficiently complete to be compiled
correctly. IBM. (2) A single compiled file and
all its associated include files. (3) An
independently compilable sequence of high-level
language statements. Each high-level language
product has different rules for what makes up a
compilation unit.

Complex Mathematics library. A C++ class
library that provides the facilities to manipulate
complex numbers and perform standard
mathematical operations on them.

condition. (1) A relational expression that can
be evaluated to a value of either true or false.
IBM. (2) An exception that has been enabled, or
recognized, by the Language Environment and
thus is eligible to activate user and language
condition handlers. Any alteration to the normal
programmed flow of an application. Conditions
can be detected by the hardware/operating system
and result in an interrupt. They can also be

detected by language-specific generated code or
language library code.

const. (1) An attribute of a data object that
declares the object cannot be changed. (2) A
keyword that allows you to define a variable
whose value does not change.

constant. (1) In programming languages, a
language object that takes only one specific value.
ISO-JTC1. (2) A data item with a value that
does not change. IBM.

constant expression. An expression having a
value that can be determined during compilation
and that does not change during the running of
the program. IBM.

constructor. A special C++ class member
function that has the same name as the class and
is used to create an object of that class.

control character. (1) A character whose
occurrence in a particular context specifies a
control function. ISO Draft. (2) Synonymous
with nonprinting character. IBM. (3) A
character, other than a graphic character, that
affects the recording, processing, transmission, or
interpretation of text. X/Open.

conversion. (1) In programming languages, the
transformation between values that represent the
same data item but belong to different data types.
Information may be lost because of conversion
since accuracy of data representation varies
among different data types. ISO-JTC1. (2) The
process of changing from one method of data
processing to another or from one data processing
system to another. IBM. (3) The process of
changing from one form of representation to
another; for example to change from decimal
representation to binary representation. IBM.
(4) A change in the type of a value. For
example, when you add values having different
data types, the compiler converts both values to a
common form before adding the values.

coordinated universal time (UTC). Equivalent
to Greenwich Mean Time (GMT)

copy constructor. A constructor that copies a
class object of the same class type.

current working directory. (1) A directory,
associated with a process, that is used in

 Glossary 413

path-name resolution for path names that do not
begin with a slash. X/Open. ISO.1. (2) In DOS,
the directory that is searched when a file name is
entered with no indication of the directory that
lists the file name. DOS assumes that the current
directory is the root directory unless a path to
another directory is specified. IBM. (3) In the
OS/2 operating system, the first directory in
which the operating system looks for programs
and files and stores temporary files and output.
IBM. (4) In the AIX operating system, a
directory that is active and that can be displayed.
Relative path name resolution begins in the
current directory. IBM.

cursor. A reference to an element at a specific
position in a data structure.

D
data definition (DD). (1) In the C and C++
languages, a definition that describes a data
object, reserves storage for a data object, and can
provide an initial value for a data object. A data
definition appears outside a function or at the
beginning of a block statement. IBM. (2) A
program statement that describes the features of,
specifies relationships of, or establishes context
of, data. ANSI. (3) A statement that is stored in
the environment and that externally identifies a
file and the attributes with which it should be
opened.

data definition name. See ddname.

data member. The smallest possible piece of
complete data. Elements are composed of data
members.

data set. Under MVS, a named collection of
related data records that is stored and retrieved by
an assigned name. Equivalent to a CMS file.

data structure. The internal data representation
of an implementation.

data type. The properties and internal
representation that characterize data.

DBCS (double-byte character set). A set of
characters in which each character is represented
by 2 bytes. Languages such as Japanese,
Chinese, and Korean, which contain more

symbols than can be represented by 256 code
points, require double-byte character sets.

Because each character requires 2 bytes, the
typing, display, and printing of DBCS characters
requires hardware and programs that support
DBCS. IBM.

ddname (data definition name). (1) The
logical name of a file within an application. The
ddname provides the means for the logical file to
be connected to the physical file. (2) The part of
the data definition before the equal sign. It is the
name used in a call to fopen or freopen to refer
to the data definition stored in the environment.

DD statement (data definition statement).
(1) In MVS, serves as the connection between
the logical name of a file and the physical name
of the file. (2) A job control statement that
defines a file to the operating system, and is a
request to the operating system for the allocation
of input/output resources.

decimal constant. (1) A numerical data type
used in standard arithmetic operations. (2) A
number containing any of the digits 0 through 9.
IBM.

declaration. (1) In the C and C++ languages, a
description that makes an external object or
function available to a function or a block
statement. IBM. (2) Establishes the names and
characteristics of data objects and functions used
in a program.

default constructor. A constructor that takes no
arguments, or, if it takes arguments, all its
arguments have default values.

default locale. (1) The C locale, which is
always used when no selection of locale is
performed. (2) A system default locale, named
by locale-related environmental variables.

define directive. A preprocessor statement that
directs the preprocessor to replace an identifier or
macro invocation with special code.

definition. (1) A data description that reserves
storage and may provide an initial value. (2) A
declaration that allocates storage, and may
initialize a data object or specify the body of a
function.

414 VisualAge C++ Programming Guide

delete. (1) A C++ keyword that identifies a free
storage deallocation operator. (2) A C++
operator used to destroy objects created by new.

demangling. The conversion of mangled names
back to their original source code names. During
C++ compilation, identifiers such as function and
static class member names are mangled (encoded)
with type and scoping information to ensure
type-safe linkage. These mangled names appear
in the object file and the final executable file.
Demangling (decoding) converts these names
back to their original names to make program
debugging easier. See also mangling.

denormal. Pertaining to a number with a value
so close to 0 that its exponent cannot be
represented normally. The exponent can be
represented in a special way at the possible cost
of a loss of significance.

derived class. A class that inherits from a base
class. All members of the base class become
members of the derived class. You can add
additional data members and member functions to
the derived class. A derived class object can be
manipulated as if it is a base class object. The
derived class can override virtual functions of the
base class.

descriptor. PL/I control block that holds
information such as string lengths, array subscript
bounds, and area sizes, and is passed from one
PL/I routine to another during run time.

destructor. A special member function that has
the same name as its class, preceded by a tilde
(˜), and that "cleans up" after an object of that
class, for example, freeing storage that was
allocated when the object was created. A
destructor has no arguments and no return type.

device. A computer peripheral or an object that
appears to the application as such. X/Open.
ISO.1.

difference. Given two sets A and B, the
difference (A-B) is the set of all elements
contained in A but not in B. For bags, there is
an additional rule for duplicates: If bag P
contains an element m times and bag Q contains
the same element n times, then, if m>n, the
difference contains that element m-n times. If
m≤n, the difference contains that element zero
times.

directory. A type of file containing the names
and controlling information for other files or
other directories. IBM.

display. To direct the output to the user's
terminal. If the output is not directed to the
terminal, the results are undefined. X/Open.

dot. The file name consisting of a single dot
character (.). X/Open. ISO.1.

double-byte character set. See DBCS.

double-precision. Pertaining to the use of two
computer words to represent a number in
accordance with the required precision.
ISO-JTC1. ANSI.

doubleword. A contiguous sequence of bits or
characters that comprises two computer words
and is capable of being addressed as a unit. IBM.

dump. To copy data in a readable format from
main or auxiliary storage onto an external
medium such as tape, diskette, or printer. IBM.

dynamic. Pertaining to an operation that occurs
at the time it is needed rather than at a
predetermined or fixed time. IBM.

dynamic link library (DLL). A file containing
executable code and data bound to a program at
load time or run time. The code and data in a
dynamic link library can be shared by several
applications simultaneously.

dynamic storage. Synonym for automatic

storage.

E
EBCDIC (extended binary-coded decimal

interchange code). A coded character set of 256
8-bit characters. IBM.

element. The component of an array, subrange,
enumeration, or set.

empty string. (1) A string whose first byte is a
null byte. Synonymous with null string. X/Open.
(2) A character array whose first element is a
null character. ISO.1.

 Glossary 415

encapsulation. Hiding the internal representation
of data objects and implementation details of
functions from the client program. This enables
the end user to focus on the use of data objects
and functions without having to know about their
representation or implementation.

enclave. In the Language Environment for MVS
and VM, an independent collection of routines,
one of which is designated as the main routine.
An enclave is roughly analogous to a program or
run unit.

entry point. In assembler language, the address
or label of the first instruction that is executed
when a routine is entered for execution.

enumeration constant. In the C or C++
language, an identifier, with an associated integer
value, defined in an enumerator. An enumeration
constant may be used anywhere an integer
constant is allowed. IBM.

enumerator. In the C and C++ language, an
enumeration constant and its associated value.
IBM.

equivalence class. (1) A grouping of characters
that are considered equal for the purpose of
collation; for example, many languages place an
uppercase character in the same equivalence class
as its lowercase form, but some languages
distinguish between accented and unaccented
character forms for the purpose of collation. IBM.
(2) A set of collating elements with the same
primary collation weight.

Elements in an equivalence class are typically
elements that naturally group together, such as all
accented letters based on the same base letter.

The collation order of elements within an
equivalence class is determined by the weights
assigned on any subsequent levels after the
primary weight. X/Open.

escape sequence. (1) A representation of a
character. An escape sequence contains the \
symbol followed by one of the characters: a, b, f,
n, r, t, v, ', ", x, \, or followed by one or more
octal or hexadecimal digits. (2) A sequence of
characters that represent, for example, nonprinting
characters, or the exact code point value to be
used to represent variant and nonvariant
characters regardless of code page. (3) In the C

and C++ language, an escape character followed
by one or more characters. The escape character
indicates that a different code, or a different
coded character set, is used to interpret the
characters that follow. Any member of the
character set used at runtime can be represented
using an escape sequence. (4) A character that is
preceded by a backslash character and is
interpreted to have a special meaning to the
operating system. (5) A sequence sent to a
terminal to perform actions such as moving the
cursor, changing from normal to reverse video,
and clearing the screen. Synonymous with
multibyte control. IBM.

exception. (1) Any user, logic, or system error
detected by a function that does not itself deal
with the error but passes the error on to a
handling routine (also called throwing the
exception). (2) In programming languages, an
abnormal situation that may arise during
execution, that may cause a deviation from the
normal execution sequence, and for which
facilities exist in a programming language to
define, raise, recognize, ignore, and handle it; for
example, (ON-) condition in PL/I, exception in
ADA. ISO-JTC1.

exception handler. (1) Exception handlers are
catch blocks in C++ applications. Catch blocks
catch exceptions when they are thrown from a
function enclosed in a try block. Try blocks,
catch blocks, and throw expressions are the
constructs used to implement formal exception
handling in C++ applications. (2) A set of
routines used to detect deadlock conditions or to
process abnormal condition processing. An
exception handler allows the normal running of
processes to be interrupted and resumed. IBM.

executable file. A regular file acceptable as a
new process image file by the equivalent of the
exec family of functions, and thus usable as one
form of a utility. The standard utilities described
as compilers can produce executable files, but
other unspecified methods of producing
executable files may also be provided. The
internal format of an executable file is
unspecified, but a conforming application cannot
assume an executable file is a text file. X/Open.

executable program. A program that has been
link-edited and therefore can be run in a
processor. IBM.

416 VisualAge C++ Programming Guide

extension. (1) An element or function not
included in the standard language. (2) File name
extension.

F
file scope. A name declared outside all blocks
and classes has file scope and can be used after
the point of declaration in a source file.

first element. The element visited first in an
iteration over a collection. Each collection has its
own definition for first element. For example,
the first element of a sorted set is the element
with the smallest value.

for statement. A looping statement that contains
the word for followed by a list of expressions
enclosed in parentheses (the condition) and a
statement (the action). Each expression in the
parenthesized list is separated by a semicolon.
You can omit any of the expressions, but you
cannot omit the semicolons.

function. A named group of statements that can
be called and evaluated and can return a value to
the calling statement. IBM.

function call. An expression that moves the path
of execution from the current function to a
specified function and evaluates to the return
value provided by the called function. A function
call contains the name of the function to which
control moves and a parenthesized list of values.
IBM.

function definition. The complete description of
a function. A function definition contains an
optional storage class specifier, an optional type
specifier, a function declarator, optional parameter
declarations, and a block statement (the function
body).

function prototype. A function declaration that
provides type information for each parameter. It
is the first line of the function (header) followed
by a ; (semicolon). The declaration is required
by the compiler at the time that the function is
declared, so that the compiler can check the type.

function template. Provides a blueprint
describing how a set of related individual
functions can be constructed.

G
global. Pertaining to information available to
more than one program or subroutine. IBM.

global variable. A symbol defined in one
program module that is used in other
independently compiled program modules.

GMT (Greenwich Mean Time). The solar time
at the meridian of Greenwich, formerly used as
the prime basis of standard time throughout the
world. GMT has been superseded by coordinate

universal time (UTC).

Greenwich Mean Time. See GMT.

H
header file. A text file that contains declarations
used by a group of functions, programs, or users.

heap. An unordered flat collection that allows
duplicate elements.

heap storage. An area of storage used for
allocation of storage whose lifetime is not related
to the execution of the current routine. The heap
consists of the initial heap segment and zero or
more increments.

hexadecimal constant. A constant, usually
starting with special characters, that contains only
hexadecimal digits. Three examples for the
hexadecimal constant with value 0 would be
'\x00', '0x0', or '0X00'.

I
I18N. Abbreviation for internationalization.

identifier. (1) One or more characters used to
identify or name a data element and possibly to
indicate certain properties of that data element.
ANSI. (2) In programming languages, a token
that names a data object such as a variable, an
array, a record, a subprogram, or a function.
ANSI. (3) A sequence of letters, digits, and
underscores used to identify a data object or
function. IBM.

 Glossary 417

if statement. A conditional statement that
contains the keyword if, followed by an
expression in parentheses (the condition), a
statement (the action), and an optional else clause
(the alternative action). IBM.

include directive. A preprocessor directive that
causes the preprocessor to replace the statement
with the contents of a specified file.

include file. See header file.

include statement. In the C and C++ languages,
a preprocessor statement that causes the
preprocessor to replace the statement with the
contents of a specified file. IBM.

incomplete type. A type that has no value or
meaning when it is first declared. There are three
incomplete types: void, arrays of unknown size
and structures and unions of unspecified content.
A void type can never be completed. Arrays of
unknown size and structures or unions of
unspecified content can be completed in further
declarations.

indirection. (1) A mechanism for connecting
objects by storing, in one object, a reference to
another object. (2) In the C and C++ languages,
the application of the unary operator * to a
pointer to access the object the pointer points to.

inheritance. A technique that allows the use of
an existing class as the base for creating other
classes.

initial heap. The VisualAge C++ heap
controlled by the HEAP runtime option and
designated by a heap_id of 0. The initial heap
contains dynamically allocated user data.

initializer. An expression used to initialize data
objects. In the C++ language, there are three
types of initializers:

1. An expression followed by an assignment
operator is used to initialize fundamental data
type objects or class objects that have copy
constructors.

2. An expression enclosed in braces ({ }) is
used to initialize aggregates.

3. A parenthesized expression list is used to
initialize base classes and members using
constructors.

input stream. A sequence of control statements
and data submitted to a system from an input
unit. Synonymous with input job stream, job
input stream. IBM.

instance. An object-oriented programming term
synonymous with object. An instance is a
particular instantiation of a data type. It is simply
a region of storage that contains a value or group
of values. For example, if a class box is
previously defined, two instances of a class box
could be instantiated with the declaration:

box box1, box2;

instantiate. To create or generate a particular
instance or object of a data type. For example,
an instance box1 of class box could be
instantiated with the declaration:

box box1;

instruction. A program statement that specifies
an operation to be performed by the computer,
along with the values or locations of operands.
This statement represents the programmer's
request to the processor to perform a specific
operation.

instruction scheduling. An optimization
technique that reorders instructions in code to
minimize execution time.

integer constant. A decimal, octal, or
hexadecimal constant.

internationalization. The capability of a
computer program to adapt to the requirements of
different native languages, local customs, and
coded character sets. X/Open.

Synonymous with I18N.

I/O Stream library. A class library that
provides the facilities to deal with many varieties
of input and output.

iteration. The process of repeatedly applying a
function to a series of elements in a collection
until some condition is satisfied.

418 VisualAge C++ Programming Guide

K
keyword. (1) A predefined word reserved for
the C and C++ languages, that may not be used as
an identifier. (2) A symbol that identifies a
parameter in JCL.

L
label. An identifier within or attached to a set of
data elements. ISO Draft.

Language Environment. Abbreviated form of
IBM Language Environment for MVS and VM.
Pertaining to an IBM software product that
provides a common runtime environment and
runtime services to applications compiled by
Language Environment-conforming compilers.

last element. The element visited last in an
iteration over a collection. Each collection has its
own definition for last element. For example, the
last element of a sorted set is the element with
the largest value.

lexically. Relating to the left-to-right order of
units.

library. (1) A collection of functions, calls,
subroutines, or other data. IBM. (2) A set of
object modules that can be specified in a link
command.

line. A sequence of zero or more non-new-line
characters plus a terminating new-line character.
X/Open.

link. To interconnect items of data or portions
of one or more computer programs; for example,
linking of object programs by a linkage editor to
produce an executable file.

linker. A computer program for creating load
modules from one or more object modules by
resolving cross references among the modules
and, if necessary, adjusting addresses. IBM.

literal. (1) In programming languages, a lexical
unit that directly represents a value; for example,
14 represents the integer fourteen, “APRIL”
represents the string of characters APRIL,
3.0005E2 represents the number 300.05.
ISO-JTC1. (2) A symbol or a quantity in a

source program that is itself data, rather than a
reference to data. IBM. (3) A character string
whose value is given by the characters
themselves; for example, the numeric literal 7 has
the value 7, and the character literal
CHARACTERS has the value CHARACTERS.
IBM.

loader. A routine, commonly a computer
program, that reads data into main storage. ANSI.

load module. All or part of a computer program
in a form suitable for loading into main storage
for execution. A load module is usually the
output of a linkage editor. ISO Draft.

local. (1) In programming languages, pertaining
to the relationship between a language object and
a block such that the language object has a scope
contained in that block. ISO-JTC1.
(2) Pertaining to that which is defined and used
only in one subdivision of a computer program.
ANSI.

locale. The definition of the subset of a user's
environment that depends on language and
cultural conventions. X/Open.

localization. The process of establishing
information within a computer system specific to
the operation of particular native languages, local
customs, and coded character sets. X/Open.

M
macro. An identifier followed by arguments
(may be a parenthesized list of arguments) that
the preprocessor replaces with the replacement
code located in a preprocessor #define directive.

main function. An external function with the
identifier main that is the first user
function—aside from exit routines and C++ static
object constructors—to get control when program
execution begins. Each C and C++ program must
have exactly one function named main.

makefile. A text file containing a list of your
application's parts. The make utility uses
makefiles to maintain application parts and
dependencies.

mangling. The encoding during compilation of
identifiers such as function and variable names to

 Glossary 419

include type and scope information. The
prelinker uses these mangled names to ensure
type-safe linkage. See also demangling.

map file. A listing file that can be created
during the prelink or link step and that contains
information on the size and mapping of segments
and symbols.

mask. A pattern of characters that controls the
keeping, deleting, or testing of portions of another
pattern of characters. ISO-JTC1. ANSI.

member. A data object or function in a
structure, union, or class. Members can also be
classes, enumerations, bit fields, and type names.

member function. (1) An operator or function
that is declared as a member of a class. A
member function has access to the private and
protected data members and member functions of
objects of its class. Member functions are also
called methods. (2) A function that performs
operations on a class.

method. In the C++ language, a synonym for
member function.

migrate. To move to a changed operating
environment, usually to a new release or version
of a system. IBM.

mode. A collection of attributes that specifies a
file's type and its access permissions. X/Open.
ISO.1.

module. A program unit that usually performs a
particular function or related functions, and that is
distinct and identifiable with respect to compiling,
combining with other units, and loading.

multibyte character. A mixture of single-byte
characters from a single-byte character set and
double-byte characters from a double-byte
character set.

multicharacter collating element. A sequence
of two or more characters that collate as an
entity. For example, in some coded character
sets, an accented character is represented by a
non-spacing accent, followed by the letter. Other
examples are the Spanish elements ch and ll.
X/Open.

multiple inheritance. An object-oriented
programming technique implemented in the C++
language through derivation, in which the derived
class inherits members from more than one base
class.

mutex. A flag used by a semaphore to protect
shared resources. The mutex is locked and
unlocked by threads in a program. A mutex can
only be locked by one thread at a time and can
only be unlocked by the same thread that locked
it. The current owner of a mutex is the thread
that it is currently locked by. An unlocked mutex
has no current owner.

N
name. In the C++ language, a name is
commonly referred to as an identifier. However,
syntactically, a name can be an identifier,
operator function name, conversion function
name, destructor name or qualified name.

nested class. A class defined within the scope of
another class.

newline character. A character that in the
output stream indicates that printing should start
at the beginning of the next line. The newline
character is designated by '\n' in the C and C++
language. It is unspecified whether this character
is the exact sequence transmitted to an output
device by the system to accomplish the
movement to the next line. X/Open.

node. In a tree structure, a point at which
subordinate items of data originate. ANSI.

NULL. In the C and C++ languages, a pointer
that does not point to a data object. IBM.

null character (NUL). The ASCII or EBCDIC
character '\0' with the hex value 00, all bits turned
off. It is used to represent the absence of a
printed or displayed character. This character is
named <NUL> in the portable character set.

null pointer. The value that is obtained by
converting the number 0 into a pointer; for
example, (void *) 0. The C and C++ languages
guarantee that this value will not match that of
any legitimate pointer, so it is used by many
functions that return pointers to indicate an error.
X/Open.

420 VisualAge C++ Programming Guide

null string. (1) A string whose first byte is a
null byte. Synonymous with empty string.
X/Open. (2) A character array whose first
element is a null character. ISO.1.

null value. A parameter position for which no
value is specified. IBM.

number sign. The character #, also known as
pound sign and hash sign. This character is
named <number-sign> in the portable character
set.

O
object. (1) A region of storage. An object is
created when a variable is defined or new is
invoked. An object is destroyed when it goes out
of scope. (See also instance.) (2) In
object-oriented design or programming, an
abstraction consisting of data and the operations
associated with that data. See also class. IBM.
(3) An instance of a class.

object code. Machine-executable instructions,
usually generated by a compiler from source code
written in a higher level language (such as the
C++ language). For programs that must be
linked, object code consists of relocatable
machine code.

object module. (1) All or part of an object
program sufficiently complete for linking.
Assemblers and compilers usually produce object
modules. ISO Draft. (2) A set of instructions in
machine language produced by a compiler from a
source program. IBM.

object-oriented programming. A programming
approach based on the concepts of data
abstraction and inheritance. Unlike procedural
programming techniques, object-oriented
programming concentrates not on how something
is accomplished, but on what data objects
comprise the problem and how they are
manipulated.

octal constant. The digit 0 (zero) followed by
any digits 0 through 7.

open file. A file that is currently associated with
a file descriptor. X/Open. ISO.1.

operand. An entity on which an operation is
performed. ISO-JTC1. ANSI.

operating system (OS). Software that controls
functions such as resource allocation, scheduling,
input/output control, and data management.

operator function. An overloaded operator that
is either a member of a class or that takes at least
one argument that is a class type or a reference to
a class type.

operator precedence. In programming
languages, an order relation defining the sequence
of the application of operators within an
expression. ISO-JTC1.

overflow. (1) A condition that occurs when a
portion of the result of an operation exceeds the
capacity of the intended unit of storage. (2) That
portion of an operation that exceeds the capacity
of the intended unit of storage. IBM.

overloading. An object-oriented programming
technique that allows you to redefine functions
and most standard C++ operators when the
functions and operators are used with class types.

P
pack. To store data in a compact form in such a
way that the original form can be recovered.

parameter. (1) In the C and C++ languages, an
object declared as part of a function declaration
or definition that acquires a value on entry to the
function, or an identifier following the macro
name in a function-like macro definition. X/Open.
(2) Data passed between programs or procedures.
IBM.

parent process. (1) The program that originates
the creation of other processes by means of
spawn or exec function calls. See also child

process. (2) A process that creates other
processes.

partitioned data set (PDS). A data set in direct
access storage that is divided into partitions,
called members, each of which can contain a
program, part of a program, or data. IBM.

path name. (1) A string that is used to identify
a file. A path name consists of, at most,

 Glossary 421

{PATH_MAX} bytes, including the terminating
null character. It has an optional beginning slash,
followed by zero or more file names separated by
slashes. If the path name refers to a directory, it
may also have one or more trailing slashes.
Multiple successive slashes are considered to be
the same as one slash. A path name that begins
with two successive slashes may be interpreted in
an implementation-dependent manner, although
more than two leading slashes will be treated as a
single slash. The interpretation of the path name
is described in pathname resolution. ISO.1.
(2) A file name specifying all directories leading
to the file.

pattern. A sequence of characters used either
with regular expression notation or for path name
expansion, as a means of selecting various
characters strings or path names, respectively.
The syntaxes of the two patterns are similar, but
not identical. X/Open.

period. The character (.). The term period is
contrasted against dot, which is used to describe a
specific directory entry. This character is named
<period> in the portable character set.

pipe. To direct data so that the output from one
process becomes the input to another process.
The standard output of one command can be
connected to the standard input of another with
the pipe operator (|). Two commands connected
in this way constitute a pipeline. IBM.

pointer. In the C and C++ languages, a variable
that holds the address of a data object or a
function. IBM.

pointer to member. An operator used to access
the address of non-static members of a class.

portable character set. The set of characters
specified in POSIX 1003.2, section 2.4:

<NUL>
<alert>
<backspace>
<tab>
<newline>
<vertical-tab>
<form-feed>
<carriage-return>
<space>
<exclamation-mark> !
<quotation-mark> "
<number-sign> #
<dollar-sign> $
<percent-sign> %
<ampersand> &
<apostrophe> '
<left-parenthesis> (
<right-parenthesis>)
<asterisk> *
<plus-sign> +
<comma> ,
<hyphen> –
<hyphen-minus> –
<period> .
<slash> /
<zero> 0
<one> 1
<two> 2
<three> 3
<four> 4
<five> 5
<six> 6
<seven> 7
<eight> 8
<nine> 9
<colon> :
<semicolon> ;
<less-than-sign> <
<equals-sign> =
<greater-than-sign> >
<question-mark> ?
<commercial-at> @

422 VisualAge C++ Programming Guide

<A> A
 B
<C> C
<D> D
<E> E
<F> F
<G> G
<H> H
<I> I
<J> J
<K> K
<L> L
<M> M
<N> N
<O> O
<P> P
<Q> Q
<R> R
<S> S
<T> T
<U> U
<V> V
<W> W
<X> X
<Y> Y
<Z> Z

<left-square-bracket> [
<backslash> \
<reverse-solidus> \
<right-square-bracket>]
<circumflex> ‸

<circumflex-accent> ‸

<underscore> _
<low-line> _
<grave-accent> `

<a> a
 b
<c> c
<d> d
<e> e
<f> f
<g> g
<h> h
<i> i
<j> j
<k> k
<l> l
<m> m
<n> n
<o> o
<p> p
<q> q
<r> r
<s> s
<t> t
<u> u
<v> v
<w> w
<x> x
<y> y
<z> z

<left-brace> {
<left-curly-bracket> {
<vertical-line> |
<right-brace> }
<right-curly-bracket> }
<tilde> ˜

portability. The ability of a programming
language to compile successfully on different
operating systems without requiring changes to
the source code.

precedence. The priority system for grouping
different types of operators with their operands.

predefined macros. Frequently used routines
provided by an application or language for the
programmer.

preprocessor. A phase of the compiler that
examines the source program for preprocessor
statements that are then executed, resulting in the
alteration of the source program.

private. Pertaining to a class member that is
only accessible to member functions and friends
of that class.

process. (1) An instance of an executing
application and the resources it uses. (2) An
address space and single thread of control that
executes within that address space, and its
required system resources. A process is created
by another process issuing the fork[] function.
The process that issues the fork[] function is
known as the parent process, and the new process
created by the fork[] function is known as the
child process. X/Open. ISO.1.

protected. Pertaining to a class member that is
only accessible to member functions and friends
of that class, or to member functions and friends
of classes derived from that class.

prototype. A function declaration or definition
that includes both the return type of the function
and the types of its parameters. See function

prototype.

public. Pertaining to a class member that is
accessible to all functions.

 Glossary 423

Q
qualified name. Used to qualify a nonclass type
name such as a member by its class name.

queue. A sequence with restricted access in
which elements can only be added at the back
end (or bottom) and removed from the front end
(or top). A queue is characterized by first-in,
first-out behavior and chronological order.

R
register storage class specifier. A specifier that
indicates to the compiler within a block scope
data definition, or a parameter declaration, that
the object being described will be heavily used.

redirection. In the shell, a method of
associating files with the input or output of
commands. X/Open.

reentrant. The attribute of a program or routine
that allows the same copy of a program or routine
to be used concurrently by two or more tasks.

regular expression. (1) A mechanism to select
specific strings from a set of character strings.
(2) A set of characters, meta-characters, and
operators that define a string or group of strings
in a search pattern. (3) A string containing
wildcard characters and operations that define a
set of one or more possible strings.

regular file. A file that is a randomly accessible
sequence of bytes, with no further structure
imposed by the system. X/Open. ISO.1.

relation. An unordered flat collection class that
uses keys, allows for duplicate elements, and has
element equality.

runtime library. A compiled collection of
functions whose members can be referred to by
an application program during runtime execution.
Typically used to refer to a dynamic library that
is provided in object code, such that references to
the library are resolved during the linking step.
The runtime library itself is not statically bound
into the application modules.

S
scalar. An arithmetic object, or a pointer to an
object of any type.

scope. (1) That part of a source program in
which a variable is visible. (2) That part of a
source program in which an object is defined and
recognized.

semaphore. An object used by multithread
applications for signalling purposes and for
controlling access to serially reusable resources.
Processes can be locked to a resource with
semaphores if the processes follow certain
programming conventions.

sequence. A sequentially ordered flat collection.

session. A collection of process groups
established for job control purposes. Each
process group is a member of a session. A
process is considered to be a member of the
session of which its process group is a member.
A newly created process joins the session of its
creator. A process can alter its session
membership. There can be multiple process
groups in the same session. X/Open. ISO.1.

shell. A program that interprets sequences of
text input as commands. It may operate on an
input stream or it may interactively prompt and
read commands from a terminal. X/Open.

This feature is provided as part of OpenEdition
MVS Shell and Utilities feature licensed program.

signal. (1) A condition that may or may not be
reported during program execution. For example,
SIGFPE is the signal used to represent erroneous
arithmetic operations such as a division by zero.
(2) A mechanism by which a process may be
notified of, or affected by, an event occurring in
the system. Examples of such events include
hardware exceptions and specific actions by
processes. The term signal is also used to refer
to the event itself. X/Open. ISO.1. (3) In AIX
operating system operations, a method of
interprocess communication that simulates
software interrupts. IBM.

signal handler. A function to be called when
the signal is reported.

424 VisualAge C++ Programming Guide

slash. The character /, also known as solidus.
This character is named <slash> in the portable
character set.

S-name. An external non-C++ name in an object
module produced by compiling with the
NOLONGNAME option. Such a name is up to 8
characters long and single case.

source file. A file that contains source
statements for such items as high-level language
programs and data description specifications.
IBM.

source program. A set of instructions written in
a programming language that must be translated
to machine language before the program can be
run. IBM.

space character. The character defined in the
portable character set as <space>. The space
character is a member of the space character class
of the current locale, but represents the single
character, and not all of the possible members of
the class. X/Open.

specifiers. Used in declarations to indicate
storage class, fundamental data type and other
properties of the object or function being
declared.

stack frame. The physical representation of the
activation of a routine. The stack frame is
allocated and freed on a LIFO (last in, first out)
basis. A stack is a collection of one or more
stack segments consisting of an initial stack
segment and zero or more increments.

stack storage. Synonym for automatic storage.

standard error. An output stream usually
intended to be used for diagnostic messages.
X/Open.

standard input. (1) An input stream usually
intended to be used for primary data input.
X/Open. (2) The primary source of data entered
into a command. Standard input comes from the
keyboard unless redirection or piping is used, in
which case standard input can be from a file or
the output from another command. IBM.

standard output. (1) An output stream usually
intended to be used for primary data output.
X/Open. (2) In the AIX operating system, the

primary destination of data coming from a
command. Standard output goes to the display
unless redirection or piping is used, in which case
standard output can go to a file or to another
command. IBM.

statement. An instruction that ends with the
character ; (semicolon) or several instructions that
are surrounded by the characters { and }.

static. A keyword used for defining the scope
and linkage of variables and functions. For
internal variables, the variable has block scope
and retains its value between function calls. For
external values, the variable has file scope and
retains its value within the source file. For class
variables, the variable is shared by all objects of
the class and retains its value within the entire
program.

storage class specifier. One of: auto, register,
static, or extern.

stream. (1) A continuous stream of data
elements being transmitted, or intended for
transmission, in character or binary-digit form,
using a defined format. (2) A file access object
that allows access to an ordered sequence of
characters, as described by the ISO C standard.
Such objects can be created by the fdopen or
fopen functions, and are associated with a file
descriptor. A stream provides the additional
services of user-selectable buffering and
formatted input and output. X/Open.

string. A contiguous sequence of bytes
terminated by and including the first null byte.
X/Open.

string literal. Zero or more characters enclosed
in double quotation marks.

struct. An aggregate of elements, having
arbitrary types.

structure. A construct (a class data type) that
contains an ordered group of data objects. Unlike
an array, the data objects within a structure can
have varied data types. A structure can be used
in all places a class is used. The initial projection
is public.

subscript. One or more expressions, each
enclosed in brackets, that follow an array name.
A subscript refers to an element in an array.

 Glossary 425

subsystem. A secondary or subordinate system,
usually capable of operating independently of or
asynchronously with, a controlling system. ISO

Draft.

superset. Given two sets A and B, A is a
superset of B if and only if all elements of B are
also elements of A. That is, A is a superset of B
if B is a subset of A.

support. In system development, to provide the
necessary resources for the correct operation of a
functional unit. IBM.

switch statement. A C or C++ language
statement that causes control to be transferred to
one of several statements depending on the value
of an expression.

system default. A default value defined in the
system profile. IBM.

T
tab character. A character that in the output
stream indicates that printing or displaying should
start at the next horizontal tabulation position on
the current line. The tab is the character
designated by '\t' in the C language. If the
current position is at or past the last defined
horizontal tabulation position, the behavior is
unspecified. It is unspecified whether the
character is the exact sequence transmitted to an
output device by the system to accomplish the
tabulation. X/Open.

This character is named <tab> in the portable
character set.

task. (1) In a multiprogramming or
multiprocessing environment, one or more
sequences of instructions treated by a control
program as an element of work to be
accomplished by a computer. ISO-JTC1. ANSI.
(2) A routine that is used to simulate the
operation of programs. Tasks are said to be
nonpreemptive because only a single task is
executing at any one time. Tasks are said to be
lightweight because less time and space are
required to create a task than a true operating
system process.

task library. A class library that provides the
facilities to write programs that are made up of
tasks.

template. A family of classes or functions with
variable types.

template class. A class instance generated by a
class template.

template function. A function generated by a
function template.

text file. A file that contains characters
organized into one or more lines. The lines must
not contain NUL characters and none can exceed
{LINE_MAX}—which is defined in
limits.h—bytes in length, including the new-line
character. The term text file does not prevent the
inclusion of control or other non-printable
characters (other than NUL). X/Open.

this. A C++ keyword that identifies a special
type of pointer in a member function, that
references the class object with which the
member function was invoked.

thread. The smallest unit of operation to be
performed within a process. IBM.

tilde. The character ˜. This character is named
<tilde> in the portable character set.

trap. An unprogrammed conditional jump to a
specified address that is automatically activated
by hardware. A recording is made of the location
from which the jump occurred. ISO-JTC1.

type. The description of the data and the
operations that can be performed on or by the
data. See also data type.

type definition. A definition of a name for a
data type. IBM.

type specifier. Used to indicate the data type of
an object or function being declared.

U
undefined behavior. Referring to a program or
function that may produce erroneous results
without warning because of its use of an
indeterminate value, or because of erroneous
program constructs or erroneous data.

426 VisualAge C++ Programming Guide

underflow. (1) A condition that occurs when
the result of an operation is less than the smallest
possible nonzero number. (2) Synonym for
arithmetic underflow, monadic operation. IBM.

union. (1) In the C or C++ language, a variable
that can hold any one of several data types, but
only one data type at a time. IBM. (2) For bags,
there is an additional rule for duplicates: If bag P
contains an element m times and bag Q contains
the same element n times, then the union of P
and Q contains that element m+n times.

unrecoverable error. An error for which
recovery is impossible without use of recovery
techniques external to the computer program or
run.

V
variable. In programming languages, a language
object that may take different values, one at a
time. The values of a variable are usually
restricted to a certain data type. ISO-JTC1.

variant character. A character whose
hexadecimal value differs between different
character sets. On EBCDIC systems, such as
S/390, these 13 characters are an exception to the
portability of the portable character set.

<left-square-bracket> [
<right-square-bracket>]
<left-brace> {
<right-brace> }
<backslash> \
<circumflex> ‸

<tilde> ˜

<exclamation-mark> !
<number-sign> #
<vertical-line> |
<grave-accent> `

<dollar-sign> $
<commercial-at> @

virtual function. A function of a class that is
declared with the keyword virtual. The
implementation that is executed when you make a

call to a virtual function depends on the type of
the object for which it is called, which is
determined at run time.

visible. Visibility of identifiers is based on
scoping rules and is independent of access.

W
white space. (1) Space characters, tab
characters, form-feed characters, and new-line
characters. (2) A sequence of one or more
characters that belong to the space character class
as defined via the LC_CTYPE category in the
current locale. In the POSIX locale, white space
consists of one or more blank characters (space
and tab characters), new-line characters,
carriage-return characters, form-feed characters,
and vertical-tab characters. X/Open.

wide character. A character whose range of
values can represent distinct codes for all
members of the largest extended character set
specified among the supporting locales.

wide-character string. A contiguous sequence
of wide-character codes terminated by and
including the first null wide-character code.
X/Open.

word boundary. Any storage position at which
data must be aligned for certain processing
operations. The halfword boundary must be
divisible by 2; the fullword boundary by 4; and
the doubleword boundary by 8. IBM.

working directory. Synonym for current

working directory.

write. (1) To output characters to a file, such as
standard output or standard error. Unless
otherwise stated, standard output is the default
output destination for all uses of the term write.
X/Open. (2) To make a permanent or transient
recording of data in a storage device or on a data
medium. ISO-JTC1. ANSI.

 Glossary 427

428 VisualAge C++ Programming Guide

 Bibliography

 This bibliography lists the publications that make up the IBM VisualAge C++ library and publications of related IBM products
referenced in this book. The list of related publications is not exhaustive but should be adequate for most VisualAge C++ users.

The IBM VisualAge C++
Library

The following books are part of the IBM
VisualAge C++ library.

¹ Read Me First!, S25H-6956

¹ Welcome to VisualAge�C++, S25H-6957

 ¹ User's Guide, S25H-6961

 ¹ Programming Guide, S25H-6958

¹ Visual Builder User's Guide, S25H-6960

¹ Visual Builder Parts Reference, S25H-6967

¹ Building VisualAge�C++ Parts for Fun and

Profit, S25H-6968

¹ Open Class Library User's Guide, S25H-6962

¹ Open Class Library Reference, S25H-6965

 ¹ Language Reference, S25H-6963-00

¹ C Library Reference, S25H-6964

The IBM VisualAge C++
BookManager Library

The following documents are available in
VisualAge C++ in BookManager format.

¹ Read Me First!, S25H-6956

¹ Welcome to VisualAge�C++, S25H-6957

 ¹ User's Guide, S25H-6961

 ¹ Programming Guide, S25H-6958

¹ Visual Builder User's Guide, S25H-6960

¹ Visual Builder Parts Reference, S25H-6967

¹ Building VisualAge�C++ Parts for Fun and

Profit, S25H-6968

¹ Open Class Library User's Guide, S25H-6962

¹ Open Class Library Reference, S25H-6965

 ¹ Language Reference, S25H-6963-00

¹ C Library Reference, S25H-6964

C and C++ Related
Publications

¹ Portability Guide for IBM C, SC09-1405

¹ American National Standard for Information

Systems / International Standards

Organization — Programming Language C

(ANSI/ISO 9899-1990[1992])

¹ Draft Proposed American National Standard

for Information Systems — Programming

Language C++ (X3J16/92-0060)

IBM OS/2 2.1 Publications

The following books describe the OS/2 2.1
operating system and the Developer's Toolkit 2.1.

¹ OS/2 2.1 Using the Operating System,
S61G-0703

¹ OS/2 2.1 Installation Guide, S61G-0704

¹ OS/2 2.1 Quick Reference, S61G-0713

¹ OS/2 2.1 Command Reference, S71G-4112

¹ OS/2 2.1 Information and Planning Guide,
S61G-0913

¹ OS/2 2.1 Keyboard and Codepages,
S71G-4113

¹ OS/2 2.1 Bidirectional Support, S71G-4114

¹ OS/2 2.1 Book Catalog, S61G-0706

¹ Developer's Toolkit for OS/2 2.1: Getting

Started, S61G-1634

IBM OS/2 3.0 Publications

¹ User's Guide to OS/2 Warp, G25H-7196-01

The following books make up the OS/2 3.0
Technical Library (G25H-7116).

¹ Control Program Programming Guide,
G25H-7101

¹ Control Program Programming Reference,
G25H-7102

 Copyright IBM Corp. 1992, 1995 429

¹ Presentation Manager Programming Guide -

The Basics, G25H-7103

¹ Presentation Manager Programming Guide -

Advanced Topics, G25H-7104

¹ Presentation Manager Programming

Reference, G25H-7105

¹ Graphics Programming Interface

Programming Guide, G25H-7106

¹ Graphics Programming Interface

Programming Reference, G25H-7107

¹ Workplace Shell Programming Guide,
G25H-7108

¹ Workplace Shell Programming Reference,
G25H-7109

¹ Information Presentation Facility

Programming Guide, G25H-7110

¹ OS/2 Tools Reference, G25H-7111

¹ Multimedia Application Programming Guide,
G25H-7112

¹ Multimedia Subsystem Programming Guide,
G25H-7113

¹ Multimedia Programming Reference,
G25H-7114

¹ REXX User's Guide, S10G-6269

 ¹ REXX Reference, S10G-6268

Other Books You Might
Need

The following list contains the titles of IBM
books that you might find helpful. These books
are not part of the VisualAge C++ or OS/2
libraries.

 BookManager READ/2
Publications

¹ IBM BookManager READ/2: General

Information, GB35-0800

¹ IBM BookManager READ/2: Getting Started

and Quick Reference, SX76-0146

¹ IBM BookManager READ/2: Displaying

Online Books, SB35-0801

¹ IBM BookManager READ/2: Installation,
GX76-0147

 Non-IBM Publications
Many books have been written about the C++
language and related programming topics. The
authors use varying approaches and emphasis.
The following is a sample of some non-IBM C++
publications that are generally available. This
sample is not an exhaustive list. IBM does not
specifically recommend any of these books, and
other C++ books may be available in your
locality.

¹ The Annotated C++ Reference Manual by
Margaret A. Ellis and Bjarne Stroustrup,
Addison-Wesley Publishing Company.

¹ C++ Primer by Stanley B. Lippman,
Addison-Wesley Publishing Company.

¹ Object-Oriented Design with Applications by
Grady Booch, Benjamin/Cummings.

¹ Object-Oriented Programming Using SOM

and DSOM by Christina Lau, Van Nostrand
Reinhold.

¹ OS/2 C++ Class Library: Power GUI

Programming with C Set ++ by Kevin Leong,
William Law, Robert Love, Hiroshi Tsuji,
and Bruce Olson, John Wiley & Sons, Inc.

430 VisualAge C++ Programming Guide

 Index

Special Characters
_ (underscore) character 393
? global file-name character 14
* global file-name character 14
\n (new-line) character 207
\x1a (Ctrl-Z) character 23, 348

Numerics
48-bit function pointers 189

A
abort function 349
accessing environment settings 57
aggregates

See also structures, unions
_Optlink linkage 151
16-bit calling conventions 193
16-bit calls 202

alignment
16-bit calls 202
automatic variables 399
char data type 399
character strings 404
fixed-length arrays 404
floating-point values 401—403
integers 399—400
structures 405

_alloca function 38
allocating storage 38
ANSI

implementation-defined behavior 339
memory management functions 253
standards supported xxii

application environment variables
See ?

argc argument to main 12, 205
arguments

escape sequences in 13
global file-name characters 14
passing to a program 13
passing to subsystem modules 205
to main 12

argv argument to main 12, 205

arrays
fixed length, mapping 404
structures, mapping 407

asynchronous exceptions 227, 231
automatic template generation 138
automatic variables, mapping and alignment 399

B
/BASE linker option 45
_beginthread function 48
binary streams 23, 32
bit fields

default type 342
implementation-defined behavior 342
mapping and alignment 407

bit masks 248
blksize attribute 27, 29
block size, setting 29
BookManager books 430
browser

See User's Guide

buffering
default buffer size 27
modes 27
redirected streams 349
specifying initial buffer size 27
subsystems 212

built-in functions 41

C
C language

sharing header files with C++ 353
standards xxii

C++ language
See also online Language Reference

calling convention for member functions 149
demangling names 394
DLL export list 67
DLL function names 66
DLL initialization 78
DLL termination 78
DLLs
exception handling 217
implementation-defined behavior 350

 Copyright IBM Corp. 1992, 1995 431

C++ language (continued)

improving performance 43
multithread support 50
pre-defined stream. 16
sharing header files with C 353
signal handling 226
standard streams file handles 21
standards xxii
subsystem DLLs 209

callback functions 198
calling 16-bit code

callbacks to 32-bit code 198
calling conventions 191
converting structres 199
converting structures 199
general rules 192
migrating header files 351
passing pointers 201
#pragma seg16 202
restrictions 194
returning values 196
sample program (SAMPLE04) 195
sharing objects 202
static linking, restrictions 191
tiled memory 194

calling conventions
__cdecl calling convention

description 185
register use in 186

__stdcall calling convention
description 184
register use in 185

16-bit code 191, 192
default 150
description 147
member functions 149
_Optlink 150—170

See also _Optlink calling convention
_Pascal 178

See also _Pascal calling convention
subsystems 208
_System 170—177

See also _System calling convention
VDDs 188

case sensitivity
for identifiers 339
memory files 26

case values, limit of 343
__cdecl

description 192—193

__cdecl (continued)

return values 196
cerr 16, 21
character devices

buffering 31
restriction on seeking 32

characters
\n in subsystem functions 207
code page 339
control 22
Ctrl-Z 348
ctype functions 344
default type 340
escape sequences 339
implementation-defined behavior 339
multibyte 340
new-line (\n) 22
significant 347
underscore 393

charmap section 118
CHARSETID section 120
checkout messages

See diagnostic messages
cin 16, 21
class libraries

multithread programs 50
subsystem development 206

clock function, era for 350
clog 16, 21
closing files 32
code segments

default attributes 65
defining attributes 66

command file
search path 6

command interpreter, locating 4
command line

passing data on 13
Common Object Request Broker Architecture

(CORBA)
and IDL 291
and SOM 278
definition 278
Environment parameter 293

compiler options
building DLLs using CPPFILT 70
disabling inlining 37
/F options

/Fr 312
/Fs 312

432 VisualAge C++ Programming Guide

compiler options (continued)

/G options
/Ga 310
/Gb 310
/Gx 43
/Gz 311

generation of files for template
resolution 143

improving performance 44
mixing old and new templates 144
/O option

disabling inlining 37
reducing program size 37

redirecting template-include files 140
reducing program size 37
/S options

/Sv option 6
ddnames 25
memory files 25

syntax for xviii
compiling and linking

See also compiler options
DLLs 67
multithread program 59
subsystems 211

Complex Mathematics library 50
COMSPEC environment variable 4
CONFIG.SYS file

environment variables 3
constructors

See also Language Reference

initializing 78
initializing subsystem 209
terminating 78

CONTEXTRECORD structure 236
control word, floating-point 248
_control87 function 248
controlling

buffering 27
converting

C++ to SOM 307
integers 340
pointers for 16-bit calls 201
 structures for 16-bit calls 199

CORBA
and IDL 291
and SOM 278
definition 278
Environment parameter 293

cout 16, 21, 33
CPPFILT utility 395
CPPOM30.LIB library 49
CPPOM30I.LIB library 49
CPPOM30O.LIB library 84
CPPON30.LIB library 206
CPPON30I.LIB library 206
CPPON30O.LIB library 206, 214
CPPOS30O.LIB library 84
creating runtime library DLLs 83, 213
creating threads 48
critical functions 231
_CRT_init function 78
_CRT_term function 78
csid() library function 93
__ctordtorInit function 78, 209
__ctordtorTerm function 78, 209
Ctrl-Z character 23, 348
ctype functions, characters in 344

D
data

global, in multithread programs 55
mapping 399
passing to a program 13

data segments
default attributes 64
defining attributes 66

daylight saving time 8
_daylight variable 57
DBCS

restriction 340
ddnames

attributes 29
blksize attribute 29
creating memory files 25
opening streams 28
precedence with fopen 32
setting 28, 29
setting file characteristics 29

debugger
See User's Guide

debugging
functions 255
heap-specific functions 256
heaps 273
memory management functions 273
tiled functions 257

 Index 433

declarators, limit of 342
decreasing program size 35—38
default

buffer size 27
buffering mode 27
calling convention 150
char type 340
fopen attributes 31
heap,changing 266
libraries, overriding 85
locale 350
runtime heap 255
signal handling 219
time zone 7
type of bit field 342

definition file
See module definition file

demangling
CPPFILT utility 395
library functions 394

destructors
See also Language Reference

initializing 78
initializing subsystem 209
terminating 78

diagnostic messages
assert macro 343

differences between POSIX and previous C
locale 103

Direct to SOM (DTS)
description 279
new, compiler support for DTS xix

direction flag 151, 171
Distributed SOM (DSOM)

definition 278
_DLL_InitTerm function

_exception_dllinit function 78
creating your own 77
initialization function 78
sample of user-created (SAMPLE03) 79—81
subsystem version 208, 209—211
termination function 78
using 75

DLLs
See Dynamic Link Libraries (DLLs)

DosCreateThread API 48
_doserrno variable 55
DosExit API 48
double-byte character set

restriction 340

DPATH environment variable 4
DSOM

See Distributed SOM (DSOM)
DTS

See Direct to SOM (DTS)
dumps, machine-state

description 249
example 251

Dynamic Link Libraries (DLLs)
_exception_dllinit function 78
C++ considerations

_Export and #pragma export. 69
CPPFILT 70
Virtual Function Tables (VFTs) 71

compiling and linking 67
_DLL_InitTerm function 75
environment 75
exception handling 62
export 65
exporting functions 66
initializing constructors and destructors 78
initializing environment 78
initializing runtime environment 75
module definition files 63
OS/2 exception handling 243
resource 82
runtime library

creating your own 83—88
sample program (SAMPLE03) 76
search path 5
signal handlers 224
signal handling 243
source files 62

sample (SAMPLE03) 63
steps for creating 61
subsystem

creating 208
_DLL_InitTerm function 208
sample program (SAMPLE05) 212

templates 72
terminating constructors and destructors 78
terminating environment 78
terminating runtime environment 75
types 61
using 72

dynamic linking
LIBPATH environment variable 5

434 VisualAge C++ Programming Guide

E
end of file

Ctrl-Z character 23
implementation-defined behavior 348
seeking past 32

_endthread function 48, 49
Enhanced editor (EPM)

See User's Guide

enum data type
size of 199
types 342

_environ variable 57
environment table 13
environment variables

accessing 12
COMSPEC 4
DPATH 4
getenv 57
LANG 5
LC environment variables 5
LC_ALL 5
LC_COLLATE 5
LC_CTYPE 5
LC_MESSAGES 5
LC_MONETARY 5
LC_NUMERIC 5
LC_SYNTAX 5
LC_TIME 5
LC_TOD 5
LIBPATH 5
locale 105
LOCPATH 6
multithread programs 57
PATH 6
runtime 3—9
setting 3
TEMPMEM 6, 26
TMP 7
TZ 7

envp argument to main 12, 205
EPM

See Enhanced editor (EPM)
era for clock function 350
errno global variable 55, 349
error codes 13, 346
ERRORLEVEL batch file statement 13
errors

handling 218

escape sequences 13, 339
establishing a signal handler 221
examples

exception handling 237
generating template definitions 135
of a per-thread variable 55
serialized I/O 52
template-implementation file 140
template-include file 141

_Exception function
CONTEXTRECORD structure 236
description of 227
DLLs 243
DosRaiseException flags 235
example of flags 239
EXCEPTIONREGISTRATIONRECORD

structure 241
EXCEPTIONREPORTRECORD structure 233
floating-point 248

exception handlers, OS/2
considerations 246
creating your own

processing information 233
prototype 232
registering 240

critical functions 231
default (_Exception) 227
deregistering 242, 246
DLLs 243
example 237
_Exception 227
floating-point exceptions 248
_Lib_excpt 230
math functions 230
multiple library environments 244
registering 246

OS/2 APIs 241
pragma handler. 240

special situations 245
stack space required 246
subsystem libraries 247
TIB chain 242

exception handling, C++ 217
See also Language Reference

_exception_dllinit function 78
EXCEPTIONREPORTRECORD structure 233, 241
exceptions, OS/2

See OS/2 exceptions
executable file

importing from DLLs 74

 Index 435

executable file (continued)

module definition file 73
search path 6

execution trace analyzer (Performance Analyzer)
See User's Guide

exit function 13, 349
exiting from main 13
expanding global file-name arguments 14
_Export keyword 66
exporting from DLLs

_Export keyword 66
C++ considerations 66
description 66
specifying in .DEF file 65

external names
reserved 393

eyecatchers 152, 153

F
/F compiler options
_Far16 calling convention

__cdecl

See __cdecl calling convention
description 192—193
_Fastcall

See _Fastcall calling convention
_Pascal

See _Pascal calling convention
return values 196

_Far32 _Pascal

calling convention
description 178
VDDs 188

keywords 188
pointers 180, 189

_Fastcall calling convention
description 192—193
register use 193
return values 196

fclose function 32
fflush function 22, 23
fgetpos function 349
fgets function
file handles, with standard streams 21
file position, accessing within character

device 22
files

characteristics 29, 32
closing 32

files (continued)

DLL
See Dynamic Link Libraries (DLLs)

header
See header files

implementation-defined behavior 348
#include

See #include files
intermediate

See intermediate files
listing

See listing files
memory 25
source

See source code
temporary

See temporary files
ways of opening 28

floating point
exceptions 248
IEEE format 400
implementation-defined behavior 341
mapping and alignment 401—403
range of values 341
registers 150
stack 171

fopen function
blksize attribute 27
creating memory files 25
default attributes 31
precedence with ddnames 32

forced writes, controlling 31
_fpreset function 48
freopen function 16, 22
/Ft option
ftell function 349
fully-buffered I/O 27
functions

callback 198
called on termination 245
choosing debugging or heap-checking 275
critical 231
debug 255
debug memory management 273
demangling C++ names 394
designing for performance 41
exporting from DLLs 66
heap-checking 275
heap-specific 254
heap-specific debug 256

436 VisualAge C++ Programming Guide

functions (continued)

implementation-defined behavior 343
importing from DLLs 74
inlined 357
intrinsic 41
memory management 253
nonreentrant 51
process control 54
reentrant 50
templates

example 135
generating definitions 134
structuring manually 142
template-implementation files 138
template-include files 138

tiled 254
tiled debug 257
tiled memory management 194

G
/G compiler options

building DLLs 65
compiling and linking DLLs 67
compiling and linking runtime DLLs 84
defaults when building DLLs 68
improving performance 37
improving program performance 44
options set by default 45
reducing program size 37
restrictions when creating resource DLLs 82
suppressing exception handling code 43
when linking with multithread programs 59

GENXLT utility 107
get and set methods 331
getenv function 57
getsyntx() library function 93
/Gf compiler options

reducing program size 44
global

file-name characters 14
variables

multithread programs 55
serialization of access 57
volatile attribute 57

guard page
support from _System linkage 173
XCPT_GUARD_PAGE_VIOLATION 229

/Gx compiler option
reducing program size 44

H
handlers

See exchand
header files

migrating from 16-bit code 351
sharing between C and C++ 353

heaps
changing the default 266
creating expandable 262
creating fixed-size 260
debug functions 256
debugging 273
default runtime 253
functions for checking 275
functions for user heaps 254
multiple 258
runtime 254
shared 269
tiled runtime 257
user 267

help
contextual xxiii
from the command line xxv
How Do I xxiv
inside VisualAge C++ xxiv
online documents xxiii

I
I/O

See input/output (I/O)
I/O Stream library 50, 53
icc command

for DLLs 68
iconv libary function

See C Library Reference

iconv library function 107
identifiers

case sensitivity in 339
reserved 393
significant characters in 339

IDL
See somidl

IEEE floating-point format 400
IF ERRORLEVEL batch file statement 13
ILIB utility 84

creating subsytem DLLs 214
file name expansion 15

 Index 437

ILINK linker
features of new linker xx

implementation-defined behavior 339
IMPLIB utility 72
import libraries

creating 72
importing from DLLs 74
#include files

See header files
initializing

DLL environment 78
runtime environment 75
static constructors and destructors 78
sybsystem constructors 209
sybsystem destructors 209

input/output (I/O)
See also streams
buffering 27
improving performance 40
memory files 25
PM considerations 33
restrictions 32
serialization 52
subsystems 212

integers
casting to pointers 341
conversions 340
implementation-defined behavior 340
mapping and alignment 399—400
range of values 340
size of 199

Interface Definition Language (IDL)
callstyles 293
definition 291
generating for SOM classes 292
names 293
SOMAttribute pragma 315
SOMIDLDecl pragma 323
SOMIDLPass pragma 323
SOMIDLTypes 325
types 292

internal names 393
intrinsic functions 37, 41
ISO C language standard xxii
IThread 49

L
LANG environment variable 5

LC environment variables 5
LC_ALL locale variable 120
LC_COLLATE locale variable 120
LC_CTYPE locale variable 120
LC_MONETARY locale variable 120
LC_NUMERIC locale variable 120
LC_SYNTAX locale variable 383

description 387
LC_TIME locale variable 120
LC_TOD locale variable 120
LIB environment variable
_Lib_excpt function

description 230
restricted OS/2 APIs 247

LIBPATH environment variable 5
libraries, class

See class libraries
libraries, dynamic link (DLLs)

See Dynamic Link Libraries (DLLs)
libraries, runtime

creating subsystem DLLs 214
creating your own 83—88
dynamically linking 61
multiple environments 244
multiple, exception handlers 244
multithread

file names 49
object 84
overriding defaults in objects 85
subsystem

creating your own 213
provided 206

library files
import 72

library functions
See also functions, C Library Reference

demangling 394
exception handling 229
exporting from user DLLs 83
implementation-defined behavior 343
intrinsic 357
subsystem libraries 207

line-buffered I/O 27
linkage

See calling conventions
linker options

icc defaults 68
improving performance 45
reducing program size 38

438 VisualAge C++ Programming Guide

linking
DLLs 68
subsystems 211

localdtconv library function 93
locale

C 94
localeconv() library function 93
locales

categories
LC_ALL 120
LC_COLLATE locale variable 120
LC_MONETARY locale variable 120
LC_NUMERIC locale variable 120
LC_SYNTAX locale variable 383
LC_TIME locale variable 120
LC_TOD locale variable 120
LC_TYPE locale variable 120

customizing 103
default 350
library functions

localdtconv 93
localeconv() 93
setlocale() 93

localeconv library function 120
new, compiler support xx
overview of VisualAge C++ support 92
search path 4
time zone 7

longjmp function 221, 223
lrecl attribute 29

M
machine-state dumps

description 249
example 251

macros
__SOM_ENABLED__
assert 343
NULL 343
offsetof 300
predefined 355
SOM_ENABLED macro 313

main program
arguments to 12, 349
passing subsystem arguments to 205
return value 13

manual template generation
mapping

automatic variables 399

mapping (continued)

bit fields 199
char data type 399
character strings 404
data 399
exceptions to signals 228
fixed-length arrays 404
floating-point values 401—403
integers 399—400
internal names 393
names 393
of structures 405
underscored names 393

masking floating-point exceptions 248
math functions

exception handling 230
implementation-defined behavior 344

_matherr function 78
memory

See also storage
management functions 253
management techniques 253
managing multiple heaps 258
new, improved support xix
shared 269
types 265

memory attribute 31
memory files

creating and removing 25
creating temporary files 26
creating with ddnames 31
restrictions 26
temporary files 6
tmpfile function 26

messages
diagnostic

See diagnostic messages
predefined output stream 16
runtime

See also runtime, messages
machine-state dumps 249
search path 4

severity 346
standard output stream 15

migration
data type changes 199
header files 351
mapping underscored names 393

module definition files
CPPFILT utility 395

 Index 439

module definition files (continued)

DLLs
creating 63
exports 65
sample (SAMPLE03) 63—65
setting code segment attributes 65
setting data segment attributes 64

executables 73, 74—75
VDDs 190

multibyte support in subsystems 207
multiple library environments 244
multithread

description 47
libraries 49
programs

compiling and linking 59
environment variables 57
global data 55
sample program (SAMPLE02) 59
serialized I/O 52
signal handling 54, 224

must-complete code 225

N
name mapping 393
/Nd and /Nt options 66
nesting levels, limits on 347
new-line character (/n)

in memory files 26
in subsystems 207
text streams 22

nl_langinfo library function 93
/NOD linker option 85, 215
/NOE linker option 77
nonreentrant functions 51, 53
NULL macro, definition 343

O
/O option

and multithread attribute volatile 57
improving program performance 44
intrinsic functions 37
reducing program size 37

object libraries 84, 214
offsetof macro 300
opening files 28
optimizing

for size 35—38

optimizing (continued)

for speed 38—44
using _Optlink 151

options, compiler
See compiler options

_Optlink calling convention
description 150
examples of code produced 154—170
eyecatchers 152
features 150
improving program performance 42
keyword 150
performance tips 151
register use 152

OS/2
publications 429

OS/2 exceptions
See also exception handlers, OS/2
asynchronous 227
critical functions 231
default handling 227
description 227
floating-point 230
handling

See also exception handlers, OS/2
DLLs 62
machine-state dumps 249

in critical functions 231
in math functions 230
in subsystems 207
mapping to C signals 228
restricted OS/2 APIs 247
synchronous 227

P
/P options

building DLLs using CPPFILT 70
_Packed keyword 353
packed structures 406
packing

See alignment
parameters

See also arguments
_Optlink convention 150, 154—170
_Pascal conventions 178—184
_System convention 170, 171—177

__parmdwords function 171
_Pascal calling conventions

16-bit
description 192—193

440 VisualAge C++ Programming Guide

_Pascal calling conventions (continued)

16-bit (continued)

return values 196
32-bit

description 178
examples of code produced 178—184
register use in 180
VDDs 188

keywords 188
passing data to a program 13
PATH environment variable 6
performance, improving 38—44

multiple heaps 258
piping standard streams 33
pointers

_Far32 _Pascal 189
_Seg16 qualifier 201
casting to integers 341

portability
and implementation-defined behaviors 339
considerations xxii
publications 429

#pragma directives 313
See also Language Reference

alloc_text 66
ClassVersion 284
data_seg 66
define 143
export 66
handler 240
implementation 141
import 75
info
map 240
pack 351
seg16 202
SOM 314
SOMAsDefault 315
SOMAttribute 315
SOMCallStyle 318
SOMClassInit 318
SOMClassName 319
SOMClassVersion 320
SOMDataName 321
SOMDefine 322
SOMIDLDecl 323
SOMIDLPass 323
SOMIDLTypes 325
SOMMetaClass 326
SOMMethodAppend 327

#pragma directives (continued)

SOMMethodName 328
SOMNoDataDirect 331
SOMNoMangling 332
SOMNonDTS 333
SOMReleaseOrder 333
stack16 193
undeclared 142

predefined macros 355
preprocessor

implementation-defined behavior 343
Presentation Manager (PM)

I/O considerations 33
processes

functions called at termination 245
termination functions 54

ptrdiff_t, size of 341
publications

related 429
putenv function 29

R
raise function 218
random numbers, seed for 56
reading syntax diagrams xv
recfm attribute 30
record length, setting 29, 30
redirecting

standard streams 16
standard streams and PM 33

reducing program size 35—38
reentrant functions 50, 51
registering exception handlers 240
registers

_Fastcall convention 193
_Optlink convention 150, 154—170
_Pascal conventions 178—184
_System convention 171—177
handling in VDDs 188
implementation-defined behavior 342
preserving under _System convention 171
use of eyecatchers 152

related publications
BookManager 430
OS/2 429
portability 429
VisualAge C++ 429

remove function 25, 348

 Index 441

rename function 348
reserved identifiers 393
resource compiler (RC) 83
resource DLLs 82
return codes 13, 346
return value from main 13
ring 0 code 187
running your program 11
runtime

environment
DLLs 75, 78
multiple 244

environment variables 3—9
See also environment variables

messages
machine-state dumps 249
search path 4

runtime libraries
creating subsystem DLLs 214
creating your own 83—88
dynamically linking 61
multiple environments 244
multiple, exception handlers 244
multithread

file names 49
object 84
overriding defaults in objects 85
subsystem

creating your own 213
provided 206

S
SAA

standard supported by VisualAge C++ xxii
sample code

calling 16-bit code (SAMPLE04) 195
for DLL (SAMPLE03)

.DEF file for .EXE 74—75
compile and link instructions 76
creating library DLLs 86—88
module definition file 63—65
source file 63
user-created _DLL_InitTerm

function 79—81
for subsystem DLL (SAMPLE05) 212

_DLL_InitTerm function 209—211
multithread program (SAMPLE02) 59

search path
command files 6

search path (continued)

DLLs 5
executable files 6
locale information 4
runtime messages 4

seeking, restrictions on 32
_Seg16 type qualifier 201
segmented pointers, declaring 201
segments

code 65
data 64
defining attributes 66

semaphores 51, 245
serialization

global variables 57
I/O 52
reentrant functions 51
subsystems 207

SET command
ddnames 28
environment variables 6

SETARGV module 14
setbuf function 27
setjmp function 221, 223
setlocale() library function 93
setting

application environment variables 3
time zone 7

SETUPARG module 15
setvbuf function 27
share attribute 30
sharing objects between 32 and 16-bit code 202
signal handlers

C++ consideration 226
considerations 224
creating your own 221
default 219
description 218
DLLs 243
establishing 221
example 222
multiple library environments 244
multithread programs 224
signal function 218

signals
default handling 219
description 218
functions 218
handlers

See signal handlers

442 VisualAge C++ Programming Guide

signals (continued)

implementation-defined behavior 346
list of 219
mapping exceptions 228
multithread programs 224

16-bit code
callback to 32-bit code 198
calling conventions 191, 192
converting structures 199
converting structures for 199
migrating header files 351
passing pointers to 201
#pragma seg16 202
restrictions 194
returning values from 196
sample program (SAMPLE04) 195
setting stack size 193
sharing objects 202
tiled memory 194

size_t, size of 341
System Object Model (SOM)

#pragma directives
SOM 314
SOMAsDefault 315
SOMAttribute 315
SOMCallStyle 318
SOMClassInit 318
SOMClassName 319
SOMClassVersion 320
SOMDataName 321
SOMDefine 322
SOMIDLDecl 323
SOMIDLPass 323
SOMIDLTypes 325
SOMMetaClass 326
SOMMethodAppend 327
SOMMethodName 328, 330
SOMNoDataDirect 331
SOMNoMangling 332
SOMNonDTS 333
SOMReleaseOrder 333

and CORBA 278
and DSOM 278
compiler options

/Fr 312
/Fs 312
/Ga 310
/Gb 310
/Gz 311

default release order 283

System Object Model (SOM) (continued)

definition 277
Differences between C++ and SOM

Calling methods using NULL 296
differences between SOM and C++ 294
get and set methods 310, 311
IDL 291
implicit mode 310
inheriting from SOMObject 308
interlanguage sharing 286
offsetof 300
options 309
recompilation requirements 285
release order 312
remote objects 278
required default constructor 286
SOM_ENABLED macro 313
version control 284

SOMMethodName #pragma 293
SOMMethodName pragma 330
SOMNoMangling #pragma 293
source code
stack

See also User's Guide

exception handling requirements 246
improving program performance 45
out of stack exception 229
size

setting for 16-bit calls 193
stack probes

See also User's Guide

improving program performance 45
standard streams

buffering 349
description 15
file handles 21
redirecting 16

standard time zone 7
standards, language xxii
static linking

16-bit code 191
__stdcall

stderr

description 15
file handle 21
redirecting 33

stdin 15
file handle 21

stdout

description 15

 Index 443

stdout (continued)

file handle 21
piping 33
redirecting 33

storage, managing 38
strdup function
streams

binary 23
changing mode 22
difference between text and binary 23
fflush function and binary streams 23
fflush function and text streams 22
implementation-defined behavior 348
opening using ddnames 28
standard 15, 21

See also standard streams
text 22

See also text streams
strings

DBCS considerations 340
implementation-defined behavior 340
improving performance 39
mapping and alignment 404

structures
_Pascal conventions 181
16-bit, compatibility with

VisualAge C++ 199
arrays of, mapping 407
containing bit-fields 407
mapping and alignment 405
packing 406
padding of 342
passing under _System convention 173
sharing with 16-bit code 199

subsystems
arguments to main 205
buffering 212
calling conventions 208
compiling and linking 211
constructors and destructors 209
creating 205
definition 205
DLLs

creating 208
_DLL_InitTerm function 208
sample program (SAMPLE05) 212

exception handling in 207
functions available 207
libraries

creating your own 213
provided 206

subsystems (continued)

multibyte support 207
restrictions 212
serialization 207

summary of changes
/Sv compiler option
synchronous exceptions 227, 231
syntax diagrams

for commands, preprocessor directives,
statements xv

for compiler options xviii
how to read xv

_System calling convention
__parmdwords function 171
calls with structures 171
description 170
examples of code produced 171—177
features 170
keyword 170
register use in 173
support for guard pages 173

system function
Systems Application Architecture (SAA)

standard supported by VisualAge C++ xxii

T
TEMPINC directory 139
template-implementation files

#pragma implementation 141
creating 138
naming 140
template-include files 138, 140, 141

templates
See also Language Reference

#pragma define 143
automatic instantiation 137
DLLs 72
example 135
generating function definitions 134
how the compiler expands 134
implementation files 138
including everywhere 137
manual instantiation 142
new, compiler support xx
TEMPINC directory 139
template-include files 138
terms 133

TEMPMEM environment variable 6, 26

444 VisualAge C++ Programming Guide

temporary files
creating as memory files 26
directory 7
implementation-defined behavior 348
memory files 6
TMP environment variable 7

terminating
DLL environment 78
runtime environment 75
static constructors and destructors 78

termination, functions called at 245
text streams

changing to binary 22
Ctrl-Z character 23
description 22
difference from binary stream 23
implementation-defined behavior 348
seeking past end of file 32

thread information block (TIB) chain 242
_threadid global variable 48
threads

_beginthread function 48
_endthread function 48
creating 48
description 47

threadstore 48
tiled memory

debug functions 257
description 194
functions 254
#pragma seg16 202

time zone
default 7
setting (TZ variable) 7

_timezone variable 57
TMP environment variable

run time 7
tmpfile function 26
tmpnam function 348
translation limits 347
/Tx compiler option 249
TZ environment variable 7
_tzname variable 57
tzset function 9

U
unbuffered I/O 27
underscore character 393

unions
implementation-defined values 342

unit-buffered I/O 27
User Interface class library 50, 53

See also Open Class Library User's Guide

V
variables

See also environment variables
automatic, mapping and alignment 399
environment

See also environment variables
accessing 12
COMSPEC 4
DPATH 4
LANG 5
LC environment variables 5
LC_ALL 5
LC_COLLATE 5
LC_CTYPE 5
LC_MESSAGES 5
LC_MONETARY 5
LC_NUMERIC 5
LC_SYNTAX 5
LC_TIME 5
LC_TOD 5
LIBPATH 5
LOCPATH 6
multithread program 57
PATH 6
runtime 3—9
setting 3
TEMPMEM 6, 26
TMP 7
TZ 7

global
multithread programs 55
serialization of access 57

passing to 16-bit code 202
VDDs

See virtual device drivers (VDDs)
virtual device drivers (VDDs)

_Pascalcalling conventions 178
calling conventions 188
compiler options 187
description 187
function pointers 189
module definition file 190
register handling 188

 Index 445

Virtual Function Tables (VFTs) 71
VisualAge C++

exception handlers 227
predefined macros 355
publications 429

volatile attribute
access 342
multithread programs 57
signal handling 225

W
/W compiler options

to find first non-inline VFT 71
wcsid() library function 93
wildcard characters 14

See also global file name characters
writethru attribute 31

446 VisualAge C++ Programming Guide

Communicating Your Comments to IBM

IBM VisualAge C++ for OS/2
Programming Guide

Version 3.0

Publication No. S25H-6958-00

If there is something you like—or dislike—about this book, please let us know. You can use one of the
methods listed below to send your comments to IBM. If you want a reply, include your name, address,
and telephone number. If you are communicating electronically, include the book title, publication number,
page number, or topic you are commenting on.

The comments you send should only pertain to the information in this book and its presentation. To
request additional publications or to ask questions or make comments about the functions of IBM products
or systems, you should talk to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

If you are mailing a readers’ comment form (RCF) from a country other than the United States, you can
give it to the local IBM branch office or IBM representative for postage-paid mailing.

¹ If you prefer to send comments by mail, use the RCF at the back of this book.

¹ If you prefer to send comments by FAX, use this number:

– United States and Canada: 416-448-6161

– Other countries: (+1)-416-448-6161

¹ If you prefer to send comments electronically, use the network ID listed below. Be sure to include
your entire network address if you wish a reply.

 – Internet: torrcf@vnet.ibm.com
 – IBMLink: toribm(torrcf)
 – IBM/PROFS: torolab4(torrcf)
 – IBMMAIL: ibmmail(caibmwt9)

Readers' Comments — We'd Like to Hear from You

IBM VisualAge C++ for OS/2
Programming Guide

Version 3.0

Publication No. S25H-6958-00

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your
comments in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø

Complete Ø Ø Ø Ø Ø

Easy to find Ø Ø Ø Ø Ø

Easy to understand Ø Ø Ø Ø Ø

Well organized Ø Ø Ø Ø Ø

Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
S25H-6958-00 ÉÂÔÙ

Fold and Tape Please do not staple Fold and Tape

PLACE
POSTAGE
STAMP
HERE

IBM Canada Ltd. Laboratory
Information Development
2G/345/1150/TOR
1150 EGLINTON AVENUE EAST
NORTH YORK ONTARIO CANADA M3C 1H7

Fold and Tape Please do not staple Fold and Tape

S25H-6958-00

ÉÂÔÙ

Part Number: 25H6958
Program Number: 30H1664
 30H1665
 30H1666

Printed in U.S.A.

25
H6
95
8

S25H-6958-00

